电子科技 ›› 2021, Vol. 34 ›› Issue (12): 56-61.doi: 10.16180/j.cnki.issn1007-7820.2021.12.010

• • 上一篇    下一篇

基于改进PCA+SVM的人脸识别系统

彭荣杰,彭亚雄,陆安江   

  1. 贵州大学 大数据与信息工程学院,贵州 贵阳 550025
  • 收稿日期:2020-08-19 出版日期:2021-12-15 发布日期:2021-12-06
  • 作者简介:彭荣杰(1995-),女,硕士研究生。研究方向:信号与信息处理、数字图像水印、图像处理。|彭亚雄(1963-),男,副教授。研究方向:数字通信技术、音视频处理技术。|陆安江(1978-),男,博士,副教授。研究方向:嵌入式系统与集成技术、物联网安全、微传感技术。
  • 基金资助:
    贵州省科技成果转化项目([2017]485)

Face Recognition System Based on Improved PCA+SVM

PENG Rongjie,PENG Yaxiong,LU Anjiang   

  1. College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China
  • Received:2020-08-19 Online:2021-12-15 Published:2021-12-06
  • Supported by:
    Guizhou Province Science and Technology Achievement Transformation Project([2017]485)

摘要:

PCA算法对数字图像处理人脸识别率不高,且无法处理人脸的非线性特征。针对这一问题,文中在原有PCA算法的基础上提出了基于KPCA并结合SVM的人脸识别研究方法。该方法通过利用核改进PCA后的KPCA算法的内部非线性核函数提取人脸面部轮廓,处理非线性特征数据并降低数据维数,有效减少特征数据存储所需的空间并提高了运算能力。然后,再结合SVM分类器进行分类识别,可较好地提高系统识别率。实验结果表明,文中所提算法在ORL人脸库中的识别率为95.16%,在Yale人脸库中识别率为95.10%。在MATLAB平台上搭建的系统能正确识别出人脸,证明了文中所提系统的可行性,为实际研究提供了参考。

关键词: 人脸识别, 主成分分析, 核主成分分析, Gamma校正法, 支持向量机, 降维, 分类识别, GUI

Abstract:

The PCA algorithm has low recognition rate for digital image processing, and cannot deal with the non-linear features of the face. In view of this problem, in the basis of original PCA algorithm, a face recognition research method based on KPCA combined with SVM is proposed in this study. By using the internal non-linear kernel function of the KPCA algorithm after the PCA is improved by the kernel, the facial contours of the face are extracted, the non-linear feature data is processed and the data dimension is reduced, which can better reduce the space required for feature data storage and improve the computing power. Then, combined with the SVM classifier for classification and recognition, the system recognition rate is improved. Experiments show that the recognition rate of the proposed algorithm in the ORL face database is 95.16%, and the recognition rate in the Yale face database is 95.10%. The system established on MATLAB can correctly recognize human faces, which proves the feasibility of the system proposed in the study, and has certain reference value for actual research.

Key words: face recognition, principal component analysis, KPCA, Gamma correction method, SVM, dimensionality reduction, classification recognition, GUI

中图分类号: 

  • TP391.4