[1] |
Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105.
|
[2] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. San Diego: Proceedings of the International Conference on Learning Representations, 2015.
|
[3] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[4] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[5] |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. Columbus: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.
|
[6] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]. Boston: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
[7] |
Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017.
|
[8] |
Choi J, Chun D, Kim H, et al. Gaussian YOLOv3: an accurate and fast object detector using localization uncertainty for autonomous driving[C]. Seoul: IEEE International Conference on Computer Vision, 2019.
|
[9] |
Liu W, Anguelov D, Erhan D, et al. Ssd: single shot multibBox detector[C]. Amsterdam: Proceedings of the European Conference on Computer Vision, 2016.
|
[10] |
缪冉, 李菲菲, 陈虬. 基于卷积神经网络与多尺度空间编码的场景识别方法[J]. 电子科技, 2020, 33(12):54-58.
|
|
Miao Ran, Li Feifei, Chen Qiu. Scene recognition algorithm based on convolutional neural networks and multi-scale space encoding[J]. Electronic Science and Technology, 2020, 33(12):54-58.
|
[11] |
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]. Boston: Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015.
|
[12] |
Lin T, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[13] |
Luo C, Yu L, Yang E, et al. A benchmark image dataset for industrial tools[J]. Pattern Recognition Letters, 2019, 12(5):341-348.
|
[14] |
Chen X, Li W, Wu Q, et al. Adaptive multi-scale information flow for object detection[C]. Newcastle: Proceedings of the British Machine Vision Conference, 2018.
|
[15] |
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[C]. San Juan: International Conference on Learning Representations, 2016.
|
[16] |
Jeon Y, Kim J. Active convolution: Learning the shape of convolution for image classification[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[17] |
Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks[C]. Honolulu: Proceedings of the IEEE International Conference on Computer Vision, 2017.
|
[18] |
Zhang X, Zhou X, Lin M, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|