电子科技 ›› 2022, Vol. 35 ›› Issue (10): 21-26.doi: 10.16180/j.cnki.issn1007-7820.2022.10.004

• • 上一篇    下一篇

基于区域限制的WiFi/PDR融合实时定位算法

胡文强,胡建鹏   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2021-04-15 出版日期:2022-10-15 发布日期:2022-10-25
  • 作者简介:胡文强(1994-),男,硕士研究生。研究方向:多源融合、室内定位。|胡建鹏(1980-),男,副教授。研究方向:物联网、云计算。
  • 基金资助:
    上海市科技学术委员会重点项目(18511101600)

WiFi/PDR Fusion Real-Time Localization Algorithm Based on Region Constraint

HU Wenqiang,HU Jianpeng   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science, Shanghai 201620,China
  • Received:2021-04-15 Online:2022-10-15 Published:2022-10-25
  • Supported by:
    Shanghai Key Project of Committee of Science and Technology(18511101600)

摘要:

针对室内定位系统在实际应用场景中算法复杂度高、运算量较大的问题,文中设计并实现了一种基于EKF的WiFi/PDR融合定位系统。在WiFi指纹定位部分提出了基于自适应滑动窗口的指纹匹配方法,通过邻近状态的RSSI欧式距离解算得到搜索窗口,以动态调整指纹库的匹配范围,从而实现了定位结果的快速收敛。在融合定位阶段,结合EKF与PDR的系统特性来解决时间配准问题。以WiFi数据更新为基准,利用EKF算法进行数据融合,在融合数据不同步时由PDR直接输出定位结果。实验结果表明,该定位系统具有良好的运行效果与稳定性,所提方法在实际定位场景中的平均定位误差为2.27 m,并在80%的情况下能够达到3 m的定位精度。

关键词: 多源融合, 室内定位, 接收信号强度, WiFi定位, K-最近邻, PDR, 扩展卡尔曼滤波, 实时定位

Abstract:

In view of the problems of high algorithm complexity and large computation in the practical application of indoor positioning system, a WiFi/PDR integrated positioning system based on EKF is designed and implemented. In the WiFi fingerprint positioning part, a fingerprint matching method based on an adaptive sliding window is proposed. The search window is obtained by calculating the RSSI Euclidean distance in the neighboring state to dynamically adjust the matching range of the fingerprint library, thereby achieving rapid convergence of the positioning results. In the fusion localization stage, the system characteristics of EKF and PDR are combined to solve the time registration problem. Based on the WiFi data update, the EKF algorithm is used for data fusion, and the PDR directly outputs the positioning result when the fusion data is not synchronized. Experimental results show that the positioning system has good operating effects and stability. The average positioning error of the proposed method is 2.27 m in the actual positioning scene, and the positioning accuracy can reach 3 m in 80% of the cases.

Key words: multi-source fusion, indoor positioning, received signal strength, WiFi positioning, K-nearest neighbor, PDR, extended Kalman filtering, real-time positioning

中图分类号: 

  • TN92