电子科技 ›› 2023, Vol. 36 ›› Issue (12): 25-31.doi: 10.16180/j.cnki.issn1007-7820.2023.12.004

• • 上一篇    下一篇

基于算术优化算法的低压配电网故障区段定位方法

王欣阳1,王瑞阳2,魏云冰1   

  1. 1.上海工程技术大学 电子电气工程学院,上海 201620
    2.许昌电气职业学院,河南 许昌 461002
  • 收稿日期:2022-07-13 出版日期:2023-12-15 发布日期:2023-12-05
  • 作者简介:王欣阳(1997-),男,硕士研究生。研究方向:电力系统自动化、智能运检。|魏云冰(1970-),男,博士,教授。研究方向:电力系统自动化、智能运检。
  • 基金资助:
    国家自然科学基金(62173222)

An Arithmetic Optimization Algorithm Based Fault Section Location Method for Low Voltage Distribution Networks

WANG Xinyang1,WANG Ruiyang2,WEI Yunbing1   

  1. 1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
    2. Xuchang Electrical Vocational College,Xuchang 461002,China
  • Received:2022-07-13 Online:2023-12-15 Published:2023-12-05
  • Supported by:
    National Natural Science Foundation of China(62173222)

摘要:

为了提高低压配电网故障区段定位的准确性和快速性,保证居民用电安全,文中提出一种基于算术优化算法实现故障区段定位的方法。算术优化算法具有结构简单、收敛速度快以及精确度高等优点。选取IEEE33节点的配电网模型,使用MATLAB对此模型节点支路、节点开关状态和适应度函数进行编程仿真。对单点故障和多点故障以及存在信号畸变的单多点故障进行仿真计算,并对仿真结果进行分析。结果表明,利用算术优化算法的局部搜索和全局搜索分开进行的特点对故障区段定位问题进行局部充分搜索,可实现准确定位,准确度达到97%,优于二进制粒子群算法、遗传算法和改进鲸鱼优化算法。

关键词: 低压配电网, 故障区段定位, IEEE33节点, 算术优化算法, 适应度函数, 粒子群算法, 遗传算法, 鲸鱼优化算法

Abstract:

In order to improve the accuracy and speed of fault location in low-voltage distribution networks and to ensure the safety of residents' electricity consumption, a method based on arithmetic optimization algorithm is proposed to realise fault section location. The arithmetic optimization algorithm has the advantages of simple structure, fast convergence speed and high accuracy. The IEEE 33-node distribution network model is selected and MATLAB is used to program and simulate the node branches, node switching states and adaptation functions of this model. Simulations are carried out for single-point and multi-point faults, as well as single-multi-point faults with signal distortion, and the simulation results are analysed. The results show that the arithmetic optimization algorithm's feature of separate local and global search is used to perform a local adequate search for the fault section location problem, resulting in an accurate location that can achieve an accuracy of 97%, outperforming the binary particle swarm algorithm, genetic algorithm and improved whale optimisation algorithm.

Key words: low voltage distribution networks, fault section location, IEEE33 nodes, arithmetic optimization algorithm, fitness function, particle swarm algorithm, genetic algorithm, whale optimization algorithm

中图分类号: 

  • TP183