Electronic Science and Technology ›› 2020, Vol. 33 ›› Issue (5): 1-8.doi: 10.16180/j.cnki.issn1007-7820.2020.05.001
QIN Xing1,GAO Xiaoqi1,CHEN Bin2
Received:
2019-03-21
Online:
2020-05-15
Published:
2020-06-02
Supported by:
CLC Number:
QIN Xing,GAO Xiaoqi,CHEN Bin. Image Super-resolution Algorithm Based on SqueezeNet Convolution Neural Network[J].Electronic Science and Technology, 2020, 33(5): 1-8.
Table 2
Comparison of objective indicators on the Middlebury dataset"
PSNR | SSIM | |||||
---|---|---|---|---|---|---|
Art | Books | Dolls | Art | Books | Dolls | |
bicubic | 31.14 | 31.21 | 32.59 | 0.928 0 | 0.958 5 | 0.952 3 |
Line3-1 | 33.15 | 32.06 | 33.41 | 0.956 9 | 0.965 9 | 0.958 6 |
Line3 | 33.20 | 32.30 | 33.53 | 0.957 2 | 0.966 6 | 0.959 1 |
FireNet1-3-5 | 33.28 | 32.32 | 33.61 | 0.959 1 | 0.968 0 | 0.960 3 |
FireNet1-3 | 33.22 | 32.20 | 33.48 | 0.956 9 | 0.966 2 | 0.958 3 |
Table 3
Comparison of objective indicators of different methods on Set5 dataset"
Image | Index | Bicubic | ScSR | ANR | SRCNN | Proposed |
---|---|---|---|---|---|---|
Butterfly | SSIM | 0.821 4 | 0.857 4 | 0.873 6 | 0.902 9 | 0.920 0 |
PSNR | 24.03 | 25.46 | 25.98 | 27.57 | 28.49 | |
Woman | SSIM | 0.889 2 | 0.909 4 | 0.917 1 | 0.923 9 | 0.930 0 |
PSNR | 28.56 | 29.86 | 30.45 | 30.91 | 31.61 | |
Comic | SSIM | 0.688 9 | 0.756 9 | 0.760 3 | 0.776 1 | 0.786 9 |
PSNR | 23.11 | 23.89 | 24.00 | 24.31 | 24.54 | |
Face | SSIM | 0.797 7 | 0.819 8 | 0.823 1 | 0.820 1 | 0.827 6 |
PSNR | 32.80 | 33.38 | 33.57 | 33.52 | 33.72 | |
zebra | SSIM | 0.795 0 | 0.841 2 | 0.845 6 | 0.794 6 | 0.852 2 |
PSNR | 26.17 | 26.62 | 28.54 | 28.82 | 29.09 |
Table 4
Comparison of objective indicators of different methods on Middlebury dataset"
Image | Index | Bicubic | ScSR | ANR | SRCNN | Proposed |
---|---|---|---|---|---|---|
Art | SSIM | 0.871 9 | 0.891 5 | 0.902 1 | 0.907 5 | 0.915 5 |
PSNR | 30.61 | 31.66 | 32.06 | 33.64 | 33.14 | |
Books | SSIM | 0.807 7 | 0.818 5 | 0.835 3 | 0.841 5 | 0.847 2 |
PSNR | 28.46 | 29.21 | 29.51 | 29.96 | 30.17 | |
Dolls | SSIM | 0.853 3 | 0.872 5 | 0.885 8 | 0.889 3 | 0.896 8 |
PSNR | 30.04 | 31.08 | 31.47 | 31.85 | 32.19 | |
Laundry | SSIM | 0.839 1 | 0857 7 | 0.870 8 | 0.877 2 | 0.885 9 |
PSNR | 28.62 | 29.80 | 30.16 | 30.89 | 31.49 | |
Reindeer | SSIM | 0.879 0 | 0.884 7 | 0.899 4 | 0.905 4 | 0.910 9 |
PSNR | 31.51 | 32.66 | 32.85 | 33.62 | 33.95 |
[1] | 曾凯, 丁世飞 . 图像超分辨率重建的研究进展[J]. 计算机工程与应用, 2017,53(16):29-35. |
Zeng Kai, Ding Shifei . Advances in image super-resolution reconstruction[J]. Computer Engineering and Applica-tions, 2017,53(16):29-35. | |
[2] | 沈丽, 韩彦芳 . 基于稀疏表示的超分辨率图像重建[J]. 电子科技, 2015,28(9):144-148 |
Shen Li, Han Yanfang . Image super-resolution reconstruction based on sparse representatio[J]. Electronic Science and Technology, 2015,28(9):144-148. | |
[3] | Irani M, Peleg S . Super resolution from image sequences[J]. ICPR-C, 1990,90(11):115-120. |
[4] | 李影, 徐伯庆 . 一种基于压缩感知的迭代重建算法[J]. 电子科技, 2016,29(11):129-134. |
Li Ying, Xu Boqing . An iterative image reconstruction algorithm based on compressed sensing[J]. Electronic Science and Technology, 2016,29(11):129-134. | |
[5] | Li Y M, Pedrycz W . Fuzzy finite qutomata and fuzzy regular expressions with membership values in lattice ordered monoids[J]. Fuzzy Sets and Systems, 2005,156(10):68-92. |
[6] | 张磊, 杨建峰, 薛彬 , 等. 改进的最大后验概率估计法实现单幅图像超分辨率重建[J]. 激光与光电子学进展, 2011,48(1):78-85. |
Zhang Lei, Yang Jianfeng, Xue Bin , et al. Modified MAP algorithm for single frame super-resolution reconstruction[J]. Laser & Optoelectronics Progress, 2011,48(1):78-85. | |
[7] | Chang H, Yeung D Y, Xiong Y. Super-resolution through neighbor embedding [C]. Washington DC:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. |
[8] | Gao X, Zhang K, Tao D , et al. Image super-resolution with sparse neighbor embedding[J]. IEEE Transactions on Image Processing, 2012,21(7):78-85. |
[9] | Timofte R, De V, Gool L V. Anchored neighborhood regression for fast example-based super-resolution [C]. Sydney:IEEE International Conference on Computer Vision, 2013. |
[10] | Yang J, Wright J, Huang T S et al.Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010,19(7):2861-2873. |
[11] | Dong C, Loy C C, He K , et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Anal Mach Intell, 2014,38(2):295-307. |
[12] | Dong C, Deng Y, Chen C L, et al. Compression artifacts reduction by a deep convolutional network [C]. Santiago:IEEE International Conference on Computer Vision, 2015. |
[13] | 王一宁, 秦品乐, 李传朋 , 等. 基于残差神经网络的图像超分辨率改进算法[J]. 计算机应用, 2018,22(1):246-254. |
Wang Yining, Qin Pinle, Li Chuanpeng . Improved algorithm of image super resolution based on residual neural network[J]. Journal of Computer Applications, 2018,22(1):246-254. | |
[14] | Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks [C]. Las Vegas:Computer Vision and Pattern Recognition, 2016. |
[15] | Iandola F N, Han S. SqueezeNet:AlexNet-level accuracy with 50× fewer parameters and <0.5MB model size [C]. San Juan:International Conference on Learning Representations, 2016. |
[16] | He Kaiming, Sun Jian. Convolutional neural networks at constrained time cost [C]. Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
[17] | Timofte R, De V, Gool L V. Anchored neighborhood regression for fast example-based super-resolution [C]. Sydney:Processing of the IEEE International Conference on Computer Vision, 2013. |
[18] | 周壮, 鲍伟龙 . 超分辨率成像系统的FPGA控制研究[J]. 电子科技, 2011,24(10):122-126. |
Zhou Zhuang, Bao Weilong . Research on FPGA control in super-resolution color imaging system[J]. Electronic Science and Technology, 2011,24(10):122-126. |
[1] | ZONG Shengkang,CHENG Jianpeng,ZHANG Xiliang. Automatic Detection Method of Crane Track Altitude Difference Based on Spot Position [J]. Electronic Science and Technology, 2022, 35(1): 21-28. |
[2] | SONG Zhangming,HE Huiyong,HUANG Yuejun. Study on On-Line Detection of Surface Defects of Flat Enameled Wire [J]. Electronic Science and Technology, 2021, 34(5): 72-78. |
[3] | ZHU Bin,LIU Zilong. Image Classification Method Using Convolutional Neural Network Based on New Initial Module [J]. Electronic Science and Technology, 2021, 34(2): 52-56. |
[4] | YAN Chao,SUN Zhanquan,TIAN Engang,ZHAO Yangyang,FAN Xiaoyan. Research Progress of Medical Image Segmentation Based on Deep Learning [J]. Electronic Science and Technology, 2021, 34(2): 7-11. |
[5] | CHEN Wenyou,ZHANG Wei,SHI Xiaofan,SONG Fang. A Semi-Dense 3D Reconstruction ORB-SLAM Algorithm with Improved ORB Feature Matching [J]. Electronic Science and Technology, 2021, 34(12): 62-67. |
[6] | SHI Weizhong,CAO Weiwei,FAN Yanming,DONG Jiajun,CHEN Shu,XIAO Hao. FPGA-Based Real-Time Edge Detection and its Implementation for Deep-Space Images [J]. Electronic Science and Technology, 2020, 33(5): 45-49. |
[7] | ZHANG Tianhao,LI Haolin. A Method of Laser Center Extraction Based on Gaussian Fitting [J]. Electronic Science and Technology, 2020, 33(5): 72-76. |
[8] | XIE Zhixuan,YAO Hongbing,FAN Ning,CHEN Feng. Connected Domain Label Detection Algorithm for Multi-target Lens [J]. Electronic Science and Technology, 2020, 33(4): 50-54. |
[9] | ZHAN Yan,ZHANG Juan. A Domain Adaptive Depth Estimation Method for Structural Perception Loss [J]. Electronic Science and Technology, 2020, 33(12): 12-16. |
[10] | WANG Wenkai. Blur Kernel Estimation Algorithm Based on Cepstrum and Spectrum Analysis [J]. Electronic Science and Technology, 2019, 32(2): 4-8. |
[11] | HE Wenjie,LIU Jingbiao,PAN Mian,LÜ Shuaishuai. Natural Scene Text Recognition Algorithm Based on Attention-CTC [J]. Electronic Science and Technology, 2019, 32(12): 32-36. |
[12] | YANG Yunhui. Research on Workpiece Location Technology Based on Monocular Vision [J]. Electronic Science and Technology, 2019, 32(12): 72-75. |
[13] | XIONG Hai-Peng, CHEN Xiang-Xiang, CHEN Chun-Wei. Text Location in Image Based on Convolution Neural Network [J]. , 2018, 31(1): 50-. |
[14] | KANG Xiu-Juan, SHI Zhan. A System of Foreign Object Localization Based on Graphics Processing [J]. , 2018, 31(1): 71-. |
[15] | ZHANG Jiajia,YANG Zhenchao,ZHOU Lü. The Cores Sorting System Research Using Image Processing Based on Matlab [J]. , 2017, 30(9): 50-. |