[1] |
Pawar S P, Biswas S, Kar G P, et al. High frequency millimetre wave absorbers derived from polymeric nanocomposites[J]. Polymer, 2016,84(2):398-419.
doi: 10.1016/j.polymer.2016.01.010
|
[2] |
Meng F B, Wang H G, Huang F, et al. Graphene-based microwave absorbing composites: a review and prospective[J]. Composites Part B: Engineering, 2018,137(1):260-277.
doi: 10.1016/j.compositesb.2017.11.023
|
[3] |
Yin Y C, Zeng M, Liu J, et al. Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites[J]. Scientific Reports, 2016(6):1-10.
|
[4] |
高亚丽, 陈苑明, 王守绪, 等. 高速传输中印制电路基板电学性能的研究[J]. 印制电路信息, 2018,26(5):19-23.
|
|
Gao Yali, Chen Fanming, Wang Shouxu. Electical properties of laminates for printed circuit during high-speed transmission[J]. Printed Circuit Information, 2018,26(5):19-23.
|
[5] |
潘志龙. 钛酸钡改性及其聚酰亚胺复合材料的性能研究[J]. 电子科技, 2015,28(3):154-157.
|
|
Pan Zhilong. Surface modification of BaTiO3 and dielectric properties of modified BaTiO3/polyimide composites[J]. Electronic Science and Technology, 2015,28(3):154-157.
|
[6] |
龚永林. 新一代印制电路板命脉-高性能基材[J]. 印制电路信息, 2018(8):1-5.
|
|
Gong Yonglin. The lifeblood of new generation PCB—high performance base material[J]. Printed Circuit Information, 2018(8):1-5.
|
[7] |
徐杰. 高频低介损覆铜箔板及其电气绝缘基板的研制[D]. 上海:东华大学, 2016.
|
|
Xu Jie. Study on low dielectric loss coppor-clad plate and its electrical insulating substrate in high frequency[D]. Shanghai:Donghua University, 2016.
|
[8] |
莫晶朝. 高频覆铜板用聚苯醚改性环氧树脂复合材料的制备和性能[D]. 杭州:浙江大学, 2013.
|
|
Mo Jingzhao. Preparation and properties of PPO modified epoxy resin composite materials applied in high requency copper clad laminates[D]. Hangzhou:Zhejiang University, 2013.
|
[9] |
Niknejad S M S, Savoji H, Pourafshari C M, et al. Separation of H2S from CH4 by polymeric membranes at different H2S concentrations[J]. International Journal of Environmental Science and Technology, 2017,14(2):375-384.
doi: 10.1007/s13762-016-1156-3
|
[10] |
Zhang Z H, Wu L, Xu T W. Synjournal and properties of side-chain-type sulfonated poly(phenylene oxide) for proton exchange membranes[J]. Journal of Membrane Science, 2011,373(12):160-166.
doi: 10.1016/j.memsci.2011.03.002
|
[11] |
Yoshimune M, Haraya K. Flexible carbon hollow fiber membranes derived from sulfonated poly(phenylene oxide)[J]. Separation and Purification Technology, 2010,75(2):193-197.
doi: 10.1016/j.seppur.2010.07.017
|
[12] |
Kaewvilai A, Tanathakorn R, Laobuthee A, et al. Electroless copper plating on nano-silver activated glass substrate: A single-step activation[J]. Surface and Coatings Technology, 2017,31(9):260-266.
|
[13] |
Huang J J, Tian C G, Wang J, et al. Fabrication of selective electroless copper plating on PET sheet: Effect of PET surface structure on resolution and adhesion of copper coating[J]. Applied Surface Science, 2018,45(8):734-742.
|
[14] |
Luo L M, Lu Z L, Huang X M, et al. Electroless copper plating on PC engineering plastic with a novel palladium-free surface activation process[J]. Surface and Coating Technology, 2014,25(1):69-73.
|
[15] |
Yi M, Sun H Y, Zhang H C, et al. Flexible fifiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating[J]. Materials Science and Engineering C, 2016,58(3):742-749.
doi: 10.1016/j.msec.2015.09.026
|
[16] |
Ding Y H, Floren M, Tan W. Mussel-inspired polydopamine for bio-surface for functionalization[J]. Biosurface and Biotribology, 2016(2):121-136
|
[17] |
Lü Y, Du Y, Chen Z X, et al. Nanocomposite membranes of polydopamine/electropositive nanoparticles/polyethyleneimine for nanofifiltration[J]. Journal of Membrane Science, 2018,54(5):99-106.
|
[18] |
Lee W, Lee J U, Byun J H. Catecholamine polymers as surface modififiers for enhancing interfacial strength of fifiber-reinforced composites[J]. Composites Science and Technology, 2015,11(8):53-61.
|