Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (2): 36-45.doi: 10.16180/j.cnki.issn1007-7820.2024.02.006
Previous Articles Next Articles
FENG Lulu,FENG Song,HU Xiangjian,CHEN Menglin,LIU Yong,WANG Di
Received:
2022-08-25
Online:
2024-02-15
Published:
2024-01-18
Supported by:
CLC Number:
FENG Lulu,FENG Song,HU Xiangjian,CHEN Menglin,LIU Yong,WANG Di. Research Status of Mid-Infrared Silicon-Based Optical Waveguides[J].Electronic Science and Technology, 2024, 37(2): 36-45.
Table 1.
Mid infrared waveguide of different material platforms"
波导 类型 | 材料 平台 | 工作 波长/μm | 偏振 模式 | 传输 损耗/dB·cm-1 | 文献 出处 |
---|---|---|---|---|---|
strip | SOI | 3.800 | TE | 3.00 | [ |
strip | SOI | 3.800 | TE/TM | 3.40 | [ |
slot | SOI | 3.800 | TE | 1.40±0.20 | [ |
FSSWG | SOI | 2.200 | TE | 2.80 | [ |
strip | GOSI | 3.682 | TE/TM | 8.00 | [ |
Rib | SOS | 4.500 | TE | 4.30±0.60 | [ |
strip | SOS | 4.500 | TE | 0.74 | [ |
strip | SOS | 5.180 | TE | 1.92 | [ |
Rib | SOS | 5.500 | TE | 4.00±0.70 | [ |
Rib | GOS | 8.000~11.000 | TE/TM | <5.50 | [ |
Rib | GOS | 4.700 | TE/TM | 1.00 | [ |
strip | GOS | 5.800 | TE | 2.50 | [ |
Rib | GOS | 3.800 | TE | 2.70 | [ |
strip | SGOS | 4.500 | TE/TM | 1.00 | [ |
strip | SGOS | 7.400 | TE/TM | 2.00 | [ |
Rib | SGOS | 5.500~8.500 | TE/TM | 2.00~3.00 | [ |
Rib | SON | 3.390 | TE | 5.20±0.60 | [ |
Rib | SON | 3.390 | TM | 5.16±0.60 | [ |
Rib | GOSN | 3.800 | TE/TM | 3.35 | [ |
Figure 7.
Manufacturing process of silicon in the fabrication of porous silicon waveguide (a)The UV pattern deposited on P-type silicon (b)Electrochemical etching in HF aqueous solution after irradiation and mask (c)The sample is immersed in diluted KOH solution except for the remaining structure formed in the unirradiated region (d)Secondary electrochemically etched at HF"
Figure 9.
Silicon Pedestal structure manufacturing process (a)Patterns of waveguide and splitter are generated on oxide-on-silicon wafer by photolithography (b)Patterns are transferred sequentially into SiO2 and Si layers using ICP-RIE (c)A thin oxide layer is conformally deposited on the sample using PECVD (d)Oxide isanisotropically and preferentially etched back using ICP-RIE (e)Undercut of silicon waveguide using SF6 gas as (f)Oxideisremoved by buffered oxide etch"
Table 2.
Mid infrared waveguides of different structure platforms"
波导 类型 | 材料 平台 | 工作 波长/μm | 偏振 模式 | 传输 损耗/dB·cm-1 | 文献 出处 |
---|---|---|---|---|---|
SOPS | SOI | 3.39 | TE | 3.90 | [ |
Undercut | SOI | 10.60 | TE | 6.00 | [ |
pedestal | SOI | 3.70 | TE | 2.70 | [ |
pedestal | SOI | 7.10 | TE10 | 0.53 | [ |
freestanding | SOI | 5.50 | TE | 13.00~14.00 | [ |
Suspended | SOI | 7.67 | TE | 3.10±0.30 | [ |
Suspended | SOI | 3.80 | TE | 0.82 | [ |
Suspended Ge | GOS | 7.50 | TE | 2.50 | [ |
Suspended Ge | GOS | 7.70 | TE | 2.65 | [ |
LOCOS | SOI | 3.39 | TE | 1.40 | [ |
[1] |
Lavchiev V M, Jakoby B. Photonics in the mid-infrared:Challenges in single-chip integration and absorptionsensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2):452-463.
doi: 10.1109/JSTQE.2016.2619330 |
[2] |
Schliesser A, Picqué N, Hänsch T W. Mid-infrared freq-uency combs[J]. Nature Photonics, 2012, 6(7):440-449.
doi: 10.1038/nphoton.2012.142 |
[3] |
Labadie L, Wallner O. Mid-infrared guided optics:A perspective for astronomical instruments[J]. Optics Express, 2009, 17(3):1947-62.
pmid: 19189025 |
[4] |
Soref R. Mid-infrared photonics in silicon and germanium[J]. Nature Photonics, 2010, 4(8):495-497.
doi: 10.1038/nphoton.2010.171 |
[5] |
Matavulj P S, Yang P Y, Bagolini A, et al. Rib waveguides for mid-infrared silicon photonics[J]. Journal of the Optical Society of America B, 2009, 26(9):1760-1766.
doi: 10.1364/JOSAB.26.001760 |
[6] | Nitkowski A, Bollond P, Dinu M, et al. Low-loss silicon-photonic devices for mid-infrared applications[C]. Reston: IEEE Photonics Conference, 2018:256-269. |
[7] | Soref R, Emelett S J, Buchwald W R. Silicon wave-guided components for the long-wave infrared region[J]. Journal of Optics A:Pure & Applied Optics, 2006, 8(10):840-848. |
[8] |
Kitamura R, Pilon L, Jonasz M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature[J]. Applied Optics, 2007, 46(33):8118-8133.
pmid: 18026551 |
[9] |
Roelkens G, Dave U, Gassenq A, et al. Silicon-based ph-otonic integration beyond the telecommunication wav-elength range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4):394-404.
doi: 10.1109/JSTQE.2013.2294460 |
[10] |
Smit M K, Dam C V. PHASAR-based WDM-devices: Principles,design and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(2):236-250.
doi: 10.1109/2944.577370 |
[11] |
Muneeb M, Chen X, Verheyen P, et al. Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm[J]. Optics Express, 2013, 21(10):11659-11669.
doi: 10.1364/OE.21.011659 pmid: 23736389 |
[12] | Labib M, Gad M, Sabry Y M, et al. Strip waveguide e-nabling low loss for silicon on silica technology in the MIR[C]. Cairo: The Thirteenth International Conference on Computer Engineering and Systems, 2018:323-331. |
[13] | Penades J S, Khokhar A, Nedeljkovic M, et al. Low-lossmid-infrared SOI slot waveguides[J]. IEEE Photonics Technology Letters, 2015, 27(11):1197-1199. |
[14] | Zhou W, Cheng Z, Wu X, et al. Fully suspended slot w-aveguide platform[J]. Journal of Applied Physics, 2018, 123(6):3103-3112. |
[15] |
Younis U, Vanga S K, Lim E J, et al. Germaniumon-SOI waveguides for mid-infrared wavelengths[J]. Optics Express, 2016, 24(11):11987-11993.
doi: 10.1364/OE.24.011987 pmid: 27410120 |
[16] |
Younis U, Lim E J, Lo G Q, et al. Propagation loss im-provement in Ge-on-SOI mid-infrared waveguides us-ing rapid thermal annealing[J]. IEEE Photonics Technology Letters, 2016, 28(21):2447-2450.
doi: 10.1109/LPT.2016.2600503 |
[17] |
Cheng Z, Chen X,Wong, et al. Mid-infrared grating cou-plers for silicon-on-sapphire waveguides[J]. IEEE Photonics Journal, 2012, 4(1):104-113
doi: 10.1109/JPHOT.2011.2179921 |
[18] |
Baehr-Jones T, Spott A, Ilic R, et al. Silicon-on-sapphire integrated waveguides for the mid-infrared[J]. Optics Express, 2010, 18(12):12127-12135.
doi: 10.1364/OE.18.012127 pmid: 20588335 |
[19] | Shankar R, Bulu I, Lončar M. Integrated high-quality factor silicon-on-sapphire ring resonators for the mid- infrared[J]. Applied Physics Letters, 2013, 102(5):495-505. |
[20] |
Li F, Jackson S D, Grillet C, et al. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared[J]. Optics Express, 2011, 19(16):15212-15220.
doi: 10.1364/OE.19.015212 pmid: 21934884 |
[21] | Yang L, Spott A, Baehr J T, et al. Silicon waveguides and ring resonators at 5.5 μm[C]. Beijing: The Seventh IEEE International Conference on Group IV Photonics, 2010:1129-1137. |
[22] |
Chang Y C P, Aede R V, Hvozdara L, et al. Low-loss germanium strip waveguides on silicon for the mid- infrared[J]. Optics Letters, 2012, 37(14):2883-2885.
doi: 10.1364/OL.37.002883 |
[23] | Anantha P, Zhang L, Li W, et al. Low propagation loss Ge-on-Si waveguides and their dependency on prossing methods[C]. Singapore: Conference on Lasers and Electro-Optics Pacific Rim, 2017:1-4. |
[24] | Millar R W, Gallacher K, Griskeviciute U, et al. Ge-on-Si mid-infrared waveguides operating up to 11 μm wavelength[C]. Cancun: IEEE the Fifteenth International Conference on Group IV Photonics, 2018:307-315. |
[25] | Malik A, Stanton E J, Liu J, et al. High performance 7×8 Ge-on-Si arrayed waveguide gratings for the mid-infrared[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6):1-8. |
[26] |
Brun M, Labeye P, Grand G, et al. Low loss SiGe graded index waveguides for mid-IR applications[J]. Optics Express, 2014, 22(1):508-518.
doi: 10.1364/OE.22.000508 pmid: 24515011 |
[27] |
Barritault P, Brun M, Labeye P, et al. Design fabrication and characterization of an AWG at 4.5 m[J]. Optics Express, 2015, 23(20):26168-26181.
doi: 10.1364/OE.23.026168 pmid: 26480131 |
[28] |
Ramirez J M, Liu Q, Vakarin V, et al. Graded SiGe wa-veguides with broadband low-loss propagation in themid infrared[J]. Optics Express, 2018, 26(2):870-877.
doi: 10.1364/OE.26.000870 pmid: 29401966 |
[29] | Khan S, Chiles J, Ma J, et al. Silicon-on-Nitride optical waveguides for mid and near-infrared integrated photonics[J]. Applied Physics Letters, 2013, 102(12):1-2. |
[30] | Mu J, Soref R, Kimerling L C, et al. Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding[J]. Applied Physics Letters, 2014, 104(3):1-4. |
[31] | Roelkens G, Abassi A, Cardile P, et al. III-V-on-Silicon photonic devices for optical communication and sensing[J]. IEEE Photonics Journal, 2015, 3(3):969-1004. |
[32] | Aalto T, Harjanne M, Cherchi M. VTT's micron-scale silicon rib+strip waveguide platform[C]. Brussels: SiliconPhotonics & Photonic Integrated Circuits V, 2016:918-927. |
[33] |
Komljenovic T, Davenport M, Hulme J, et al. Heterogen-eous silicon photonic integrated circuits[J]. Journal of Lightwave Technology, 2016, 34(1):20-35.
doi: 10.1109/JLT.2015.2465382 |
[34] | Li W, Anantha P, Bao S, et al. Modeling and fabricationof Ge-on-Si3N4 for low bend-loss waveguides[C]. Shanghai: IEEE the Thirteenth International Conference on Group IV Photonics, 2016:1133-1140. |
[35] | Li W, Anantha P, Bao S, et al. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics[J]. Applied Physics Letters, 2016, 109(24):1101-1106. |
[36] | Li W, Anantha P, Lee K H, et al. Spiral waveguides on germanium-on-silicon nitride platform for mid-IR sen-sing applications[J]. Photonics Journal, 2018, 10(3):1-7. |
[37] | Mashanovich G Z, Headley W R, Milosevic M, et al. Waveguides for mid-infrared group IV photonics[C]. Beijing: The Seventh IEEE International Conference on Group IV Photonics, 2010:8322-8328. |
[38] |
Wei Y X, Li G Y, Hao Y L, et al. Long-wave infrared 1×2 MMI based on air-gap beneath silicon rib wave-guides[J]. Optics Express, 2011, 19(17):15803-15812.
doi: 10.1364/OE.19.015803 |
[39] |
Lin P T, Singh V, Cai Y, et al. Air-clad silicon pedestal structures for broadband mid-infrared microphotonics[J]. Optics Letters, 2013, 38(7):1031-1033.
doi: 10.1364/OL.38.001031 pmid: 23546233 |
[40] |
He L, Guo Y, Han Z, et al. Loss reduction of silicon-on-insulator waveguides for deep mid-infrared applications[J]. Optics Letters, 2017, 42(17):3454-3457.
doi: 10.1364/OL.42.003454 pmid: 28957061 |
[41] |
Yang P Y, Stankovic S, Crnjanski J, et al. Silicon photonic waveguides for mid-and long-wave infrared region[J]. Journal of Materials Science: Materials in Electronics, 2009, 20(1):159-163.
doi: 10.1007/s10854-007-9497-9 |
[42] |
Soler P J, Sánchez-Postigo A, Nedeljkovic M, et al. Sus-pended silicon waveguides for long-wave infrared wavelengths[J]. Optics Letters, 2018, 43(4):795-798.
doi: 10.1364/OL.43.000795 |
[43] |
Sánchez-Postigo A, Wangüemert-Pérez J G, Soler Pena-dés J, et al. Mid-infrared suspended waveguide platform and building blocks[J]. IET Optoelectronics, 2018, 13(2):2-8.
doi: 10.1049/ote2.v13.1 |
[44] | Mashanovich G Z, Wu Y, Osman A, et al. Mid-infrared suspended group IV photonics[C]. Bari: The Twenty-second International Conference on Transparent Optical Networks, 2020:701-710. |
[45] |
Gamal R, Ismail Y, Swillam M A. Silicon waveguides at the mid-infrared[J]. Journal of Lightwave Technology, 2015, 33(15):3207-3214.
doi: 10.1109/JLT.2015.2410493 |
[1] | WANG Di,FENG Song,CHEN Menglin,LIU Yong,HU Xiangjian,FENG Lulu. Research Progress of SiGe Electro-Optical Modulator [J]. Electronic Science and Technology, 2024, 37(2): 46-54. |
[2] | LI Gang1, HU Xu2. Fast Extraction Method of Filter Intercavity Coupling Coefficients [J]. , 2016, 29(11): 25-. |
[3] | DONG Cui, LI Li, WU Zhen-Sen. The Analysis on Offshore Atmospheric Duct with Parabolic Equation Method [J]. , 2010, 23(11): 91-93. |