Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (10): 6-14.doi: 10.16180/j.cnki.issn1007-7820.2024.10.002
Previous Articles Next Articles
WANG Shike1, YOU Xiaoming1, YIN Ling1, LIU Sheng2
Received:
2023-03-14
Online:
2024-10-15
Published:
2024-11-04
Supported by:
CLC Number:
WANG Shike, YOU Xiaoming, YIN Ling, LIU Sheng. Heterogeneous Ant Optimization Based on Dynamic Entropy Evolution[J].Electronic Science and Technology, 2024, 37(10): 6-14.
"
EHACO算法求解TSP |
1.EHACO步骤( ) |
2.开始: |
3.输入 TSP城市集 |
4.初始化信息素和参数 |
5.计算城市之间的距离 |
6. for iter←1 to Nmaxdo % Nmax为最大迭次数 |
7. #ACS种群 |
8. for i←1 to m do %, m为蚂蚁数量 |
9. for j ←2 to n do %, n是城市数量 |
10. 通过式(1)和式(2)进行路径构建 |
11. 通过式(3)进行局部信息素更新 |
12. end |
13. end |
14. 通过式(4)进行全局信息素更新 |
15. 通过式(10)~式(12)分别计算ACS种群的信息熵及其信息熵阈值 |
16. #MMAS种群 |
17. for i←1 to m do %, m为蚂蚁数量 |
18. for j ←2 to n do %, n是城市数量 |
19. 通过式(2)进行路径构建 |
20. 通过式(8)进行信息素更新 |
21. end |
22. end |
23. 通过式(10)~式(12)分别计算MMAS种群的信息熵及其信息熵阈值 |
24. IF E(pi)≤E*(pi) % E(pi)为种群i的信息熵,E*(pi)是信息熵阈值 |
25. 采用式(13)~式(15)进行公共路径信息素融合 |
26. 采用式(16)对非公共路径伪初始化 |
27. end |
28. iter= iter + 1 |
29. end |
30.输出 全局最优值 |
Table 2.
Performance comparison of ACS, MMAS, EHACO in different test sets"
S/N | 城市集 | 规模 | 标准最优解 | 算法 | 最优解 | 最差解 | 平均解 | Error/% | Std |
---|---|---|---|---|---|---|---|---|---|
1 | eil51 | 51 | 426 | ACS | 426 | 435 | 429.87 | 0.00 | 2.85 |
MMAS | 426 | 428 | 427.53 | 0.00 | 0.62 | ||||
EHACO | 426 | 428 | 407.07 | 0.00 | 0.68 | ||||
2 | kroA100 | 100 | 21 282 | ACS | 21 282 | 22 206 | 21 521.40 | 0.00 | 226.21 |
MMAS | 21 282 | 21 557 | 21 360.47 | 0.00 | 65.14 | ||||
EHACO | 21 282 | 21 369 | 21 303.27 | 0.00 | 26.28 | ||||
3 | kroB100 | 100 | 22 141 | ACS | 22 179 | 22 901 | 22 372.87 | 0.17 | 162.77 |
MMAS | 22 193 | 22 365 | 22 296.27 | 0.23 | 47.57 | ||||
EHACO | 22 141 | 22 365 | 22 269.53 | 0.00 | 61.38 | ||||
4 | eil101 | 101 | 629 | ACS | 635 | 663 | 644.93 | 0.95 | 7.24 |
MMAS | 631 | 657 | 643.00 | 0.32 | 7.84 | ||||
EHACO | 629 | 645 | 634.33 | 0.00 | 4.45 | ||||
5 | kroA150 | 150 | 26 524 | ACS | 26 801 | 27 603 | 27 181.20 | 1.04 | 206.95 |
MMAS | 26 758 | 27 495 | 26 998.67 | 0.88 | 199.01 | ||||
EHACO | 26 686 | 27 111 | 26 856.27 | 0.61 | 126.30 | ||||
6 | kroB150 | 150 | 26 130 | ACS | 26 290 | 27 221 | 26 593.33 | 0.61 | 267.29 |
MMAS | 26 152 | 26 764 | 26 459.53 | 0.08 | 176.21 | ||||
EHACO | 26 130 | 26 653 | 26 317.73 | 0.00 | 147.39 | ||||
7 | kroA200 | 200 | 29 368 | ACS | 29 604 | 30 306 | 29 946.87 | 0.80 | 209.62 |
MMAS | 29 421 | 29 963 | 29 649.47 | 0.18 | 137.24 | ||||
EHACO | 29 387 | 29 596 | 29 491.73 | 0.06 | 58.78 | ||||
8 | kroB200 | 200 | 29 437 | ACS | 29 911 | 30 883 | 30 242.07 | 1.61 | 263.76 |
MMAS | 29 763 | 30 246 | 29 965.00 | 1.11 | 140.27 | ||||
EHACO | 29 591 | 30 149 | 29 887.40 | 0.52 | 136.86 | ||||
9 | pr264 | 264 | 49 135 | ACS | 49 441 | 51 698 | 50 258.00 | 0.62 | 740.55 |
MMAS | 49 718 | 53 353 | 51 343.53 | 1.19 | 1 074.23 | ||||
EHACO | 49 135 | 50 531 | 49 419.33 | 0.00 | 465.96 | ||||
10 | lin318 | 318 | 42 029 | ACS | 43 089 | 45 261 | 44 285.13 | 2.52 | 540.06 |
MMAS | 42 726 | 44 084 | 43 474.80 | 1.66 | 330.99 | ||||
EHACO | 42 153 | 43 543 | 42 766.53 | 0.30 | 326.74 | ||||
11 | fl417 | 417 | 11 861 | ACS | 12 102 | 12 610 | 12 297.07 | 2.03 | 154.16 |
MMAS | 12 038 | 12 429 | 12 236.67 | 1.49 | 103.91 | ||||
EHACO | 11 956 | 12 116 | 12 025.87 | 0.80 | 49.06 | ||||
12 | p654 | 654 | 34 643 | ACS | 36 118 | 39 664 | 37 712.40 | 4.26 | 1 011.18 |
MMAS | 35 922 | 38 970 | 26 868.33 | 3.67 | 841.20 | ||||
EHACO | 34 843 | 35 281 | 35 081.87 | 0.58 | 123.70 |
Table 3.
Comparison among HEACO and other algorithms in small-scale TSP instances"
城市集 | 标准 最优解 | HEACO | HNACO (2023) | DA-GVNS (2022) | CACO (2022) | DSMO (2020) | |
---|---|---|---|---|---|---|---|
最优解 | 最优解 | 最优解 | 最优解 | 最优解 | |||
eil51 | 426 | 426 | 426 | 426 | 426 | 428.86 | |
kroA100 | 21 282 | 21 282 | 21 282 | 21 282 | 21 282 | 21 298.21 | |
kroB100 | 22 141 | 22 141 | 22 141 | 22 165 | 22 141 | 22 308.00 | |
eil101 | 629 | 629 | 629 | 633 | - | 648.66 | |
kroA150 | 26 524 | 26 686 | 26 621 | 26 817 | 26 583 | 27 591.44 | |
kroB150 | 26 130 | 26 130 | 22 132 | 2 626 256 | - | 26 601.94 | |
kroA200 | 29 368 | 29 387 | 29 401 | 29 807 | 29 368 | 30 481.35 | |
kroB200 | 29 437 | 29 591 | 29 508 | 30 015 | 29 524 | 30 716.50 |
Table 4.
Comparison among HEACO and other algorithms in large -scale TSP instances"
pr264 | lin318 | fl417 | p654 | ||
---|---|---|---|---|---|
HEACO | 最优解 | 49 135.00 | 42 153.00 | 11 956.00 | 34 843.00 |
HNACO(2023) | 最优解 | - | 42 513.00 | 11 957.00 | 35 014.00 |
DA-GVNS(2022) | 最优解 | 49 880.00 | 43 201.00 | 12 019.00 | - |
CACO(2022) | 最优解 | - | 42 365.00 | 11 950.00 | 34 932.00 |
RNN-SA(2021) | 最优解 | 49 197.32 | 42 862.50 | - | - |
DSMO(2020) | 最优解 | - | 44 118.66 | 12 218.98 | - |
HMMA(2015) | 最优解 | 50 554.58 | 45 349.62 | 12 542.84 | 37 043.68 |
[1] | 朱宏伟, 张海南. 基于拥挤度因子的动态信息素更新策略蚁群算法[J]. 电子科技, 2020, 33(8):59-64. |
Zhu Hongwei, Zhang Hainan. Ant colony optimization for dynamic pheromone update strategy based on congestion factor[J]. Electronic Science and Technology, 2020, 33(8):59-64. | |
[2] | 游晓明, 刘升, 吕金秋. 一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J]. 控制与决策, 2017, 32(3):552-556. |
You Xiaoming, Liu Sheng, Lü Jinqiu. Ant colony algori-thm based on dynamic search strategy and its application on path planning of robot[J]. Control and Decision, 2017, 32(3):552-556. | |
[3] | 孙鹏娜, 张忠民. 基于蚁群算法的无人船平滑路径规划[J]. 电子科技, 2023, 36(3):14-20. |
Sun Pengna, Zhang Zhongmin. Path planning and smoothing for unmanned surface vehicle based on improved ant colony optimization[J]. Electronic Science and Technology, 2023, 36(3):14-20. | |
[4] | Dorigo M, Stützle T. Ant colony optimization[M]. London: The MIT Press,2004:65-66 |
[5] | Zheng R Z, Zhang Y, Yang K. A transfer learning-based particle swarm optimization algorithm for travelling salesman problem[J]. Journal of Computational Design and Engineering, 2022, 9(3):933-948. |
[6] | Ghorab A. An improved immune genetic algorithm and its application on TSP[C]. Deir El-Balah: International Conference on Promising Electronic Technologies,2021:84-88. |
[7] | Shirdel G H, Abdolhosseinzadeh M. A simulated annealing heuristic for the online symmetric traveling salesman problem[J]. Journal of Information and Optimization Sciences, 2018, 39(6):1283-1296. |
[8] | Dorigo M, Gambardella L. Ant colony system:A cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1):53-66. |
[9] | Guo X B, Liu Y P. Intelligent traffic cloud computing system based on ant colony algorithm[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(4):4947-4958. |
[10] | Martin E, Cervantes A, Saez Y, et al. IACS-HCSP:Impr-oved ant colony optimization for large-scale home care scheduling problems[J]. Expert Systems with Applications, 2020, 14(2):112994-113005. |
[11] | Dorigo M. The any system optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems,Man and Cybernetics-Part B, 1996, 26(1):1-13. |
[12] | Stützle T, Hoos H. MAX-MIN ant system[J]. Future G-eneration Computer Systems, 2000, 16(8):889-914. |
[13] | Chitty D. An ant colony optimisation inspired crossover operator for permutation type problems[C]. Kraków: IEEE Congress on Evolutionary Computation,2021:57-64. |
[14] | 张毅, 权浩, 文家富. 基于独狼蚁群混合算法的移动机器人路径规划[J]. 华中科技大学学报(自然科学版), 2020, 48(1):127-132. |
Zhang Yi, Quan Hao, Wen Jiafu. Mobile robot path pla-nning based on the wolf ant colony hybrid algorithm[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(1):127-132. | |
[15] | 胡章芳, 罗磊, 吕元元, 等. 基于势场导向的对数蚁群算法的移动机器人路径规划[J]. 重庆邮电大学学报(自然科学版), 2021, 33(3):498-506. |
Hu Zhangfang, Luo Lei, Lü Yuanyuan, et al. Path planning of mobile robot based on potential field oriented logarithmic ant colony algorithm[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2021, 33(3):498-506. | |
[16] |
许凯波, 鲁海燕, 程毕芸. 求解TSP的改进信息素二次更新与局部优化蚁群算法[J]. 计算机应用, 2017, 37(6):1686-1691.
doi: 10.11772/j.issn.1001-9081.2017.06.1686 |
Xu Kaibo, Lu Haiyan, Cheng Biyun. Ant colony optimi-zation algorithm based on improved pheromones double updating and local optimization for solving TSP[J]. Journal of Computer Applications, 2017, 37(6):1686-1691.
doi: 10.11772/j.issn.1001-9081.2017.06.1686 |
|
[17] | Liu Y H, Cao B Y, Li H H. Improving ant colony optimization algorithm with epsilon greedy and Levy flight[J]. Complex & Intelligent Systems, 2021, 7(4):1711-1722. |
[18] | Yu J, You X M, Liu S. Ant colony algorithm based on magnetic neighborhood and filtering recommendation[J]. Soft Computing, 2021, 25(13):8035-8050. |
[19] |
卜冠南, 刘建华, 姜磊, 等. 一种自适应分组的蚁群算法[J]. 计算机工程与应用, 2021, 57(6):67-73.
doi: 10.3778/j.issn.1002-8331.2003-0296 |
Bu Guannan, Liu Jianhua, Jiang Lei, et al. Ant colony algorithm with adaptive grouping[J]. Computer Engineering and Applications, 2021, 57(6):67-73.
doi: 10.3778/j.issn.1002-8331.2003-0296 |
|
[20] |
Zheng Y F, Xu J, Chen H Z. TOPSIS-based entropy measure for intuitionistic trapezoidal fuzzy sets and application to multi-attribute decision making[J]. Mathematical Biosciences and Engineering, 2020, 17(5):5604-5617.
doi: 10.3934/mbe.2020301 pmid: 33120568 |
[21] |
李华, 郭皓杰, 谢辉, 等. 基于信息熵的森林火灾应急指挥信息传递分析[J]. 中国安全科学学报, 2023, 33(1):80-87.
doi: 10.16265/j.cnki.issn1003-3033.2023.01.2359 |
Li Hua, Guo Haojie, Xie Hui, et al. Information transmi-ssion analysis of forest fire emergency command based on information entropy[J]. China Safety Science Journal, 2023, 33(1):80-87.
doi: 10.16265/j.cnki.issn1003-3033.2023.01.2359 |
|
[22] | Chen Y J, Liu J J, Lan L M, et al. A fast online planning under partial observability using information entropy rewards[J]. Transactions on Industrial Information, 2023, 19(2):1-11. |
[23] | 张佩, 游晓明, 刘升. 融合动态层次聚类和邻域区间重组的蚁群算法[J]. 计算机应用研究, 2023, 40(6):1666-1672. |
Zhang Pei, You Xiaoming, Liu Sheng. Ant colony algorithm based on dynamic hierarchical clustering and neighborhood recombination[J]. Application Research of Cmputers, 2023, 40(6):1666-1672. | |
[24] | Karakostas P, Sifaleras A. A double-adaptive general variable neighborhood search algorithm for the solution of the traveling salesman problem[J]. Applied Soft Computing, 2022, 12(1):108746-108752. |
[25] | Zhao J B, You X M, Duan Q Q, et al. Multiple ant colony algorithm combining community relationship network[J]. Arabian Journal for Science and Engineering, 2022, 47(8):10531-10546. |
[26] | Rahman M, Parvez H. Repetitive nearest neighbor based simulated annealing search optimization algorithm fortraveling salesman problem[J]. OALib, 2021, 8(6):1-17. |
[27] | Akhand M A H, Ayon S I, Shahriyar S A, et al. Discrete spider monkey optimization for travelling salesman problem[J]. Applied Soft Computing Journal, 2020, 86(2):105887-105893. |
[28] | Wang Y. Hybrid max-min ant system with four vertices and three lines inequality for traveling salesman problem[J]. Soft Computing, 2015, 19(3):585-596. |
[1] | SHEN Yihan,YANG Jinghui,WANG Hao. A Hyperspectral Image Classification Method Based on Grid Diversity and Active Learning [J]. Electronic Science and Technology, 2022, 35(11): 48-57. |
[2] | ZHU Hongwei,ZHANG Hainan. Ant Colony Optimization for Dynamic Pheromone Update Strategy Based on Congestion Factor [J]. Electronic Science and Technology, 2020, 33(8): 59-64. |
[3] | WU Chunlin,LI Huifang,LI Jing. Joint Relay Selection and User Pairing for Non-Orthogonal Multiple Access Systems [J]. Electronic Science and Technology, 2020, 33(7): 37-40. |
[4] | LI Yi-Hong, QIU Gui. The Particle Swarm Optimization Algorithm Merged with Ant Colony Optimization Algorithm of Fire Rescue Way Research [J]. , 2018, 31(1): 58-. |
[5] | ZHANG Xiaoman,SHI Ping,YU Hongliu,XU Yankun,GUO Mingming . Implementation of Wearable Physiological Signal Detection and Analysis System [J]. , 2017, 30(9): 65-. |
[6] | ZHAO Huiguang 1,HE Shengxue 1,HUANG Qing 2,XIANG Lejia 3. Study on the Strategy of Bus Evacuation Based on Improved ant Colony Optimization [J]. , 2017, 30(4): 68-. |
[7] | CHU Haoying, SU Shengjun. Research on Transmit Diversity in Wireless Communication Systems [J]. , 2016, 29(11): 19-. |
[8] | YANG Lei, ZHU Lingkang, GAO Guowei, XU Kai, YANG Han, JIN Hao. Worm Gear Fault Identification Based on FSAACO Mixed Improved Algorithm [J]. , 2016, 29(11): 133-. |
[9] | LIN Zhilong,LU Yuming. Diversity of Cellular Genetic Algorithm [J]. , 2015, 28(4): 9-. |
[10] | WANG Xiaojuan. A Fast and Efficient Artificial Bee Colony Algorithm [J]. , 2015, 28(3): 61-. |
[11] | LI Hanyi,CHEN Jiaqi. Research on Task Scheduling Algorithm In Cloud Computing Environment [J]. , 2015, 28(11): 43-. |
[12] | ZHAO Hualong,ZHANG Zhili,WANG Linan. Application of Cooperative Communication Technology in Satellite System [J]. , 2014, 27(8): 90-. |
[13] | ZHANG Guihua. MIMO Antenna System Design [J]. , 2014, 27(6): 82-. |
[14] | LI Xiaobing,ZHANG Tingyuan,SONG Tao,LI Jing. Mobile Relay Communication Technology:Overview and Prospects [J]. , 2014, 27(11): 185-. |
[15] | DIAO Xinying. Subcarrier Selection in Cooperative OFDM Networks [J]. , 2013, 26(5): 146-. |
|