[1] |
Wu S D, Wu P H, Wu C W , et al. Bearing fault diagnosis based on multiscale permutation entropy and support vector machine[J]. Entropy, 2012,14(8):1343-1356.
doi: 10.3390/e14081343
|
[2] |
桑琦, 陈浩, 李卫华 . 基于小波变换的图像融合方法仿真[J]. 电子科技, 2017,30(3):1-3,7.
|
|
Sang Qi, Chen Hao, Li Weihua . Image fusion method simulation based on wavelet transform[J]. Electronic Science and Technology, 2017,30(3):1-3,7.
|
[3] |
李文峰, 戴豪民, 许爱强 . 时域新指标和PNN在滚动轴承故障诊断中的应用[J]. 机械科学与技术, 2016,35(9):1382-1386.
|
|
Li Wenfeng, Dai Haomin, Xu Aiqiang . New Time domain index and probabilistic neural network and their application in fault diagnosis of rolling bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2016,35(9):1382-1386.
|
[4] |
徐卫晓, 宋平, 谭维文 . 基于KPCA-BP网络模型的滚动轴承故障诊断方法研究[J]. 煤矿机械, 2014,25(8):265-267.
|
|
Xu Weixiao, Song Ping, Tan Weiwen , et al. Fault diagnosis methods of rolling bearing based on kernel principal component analysis and BP neural network[J]. Coal Mine Machinery, 2014,25(8):265-267.
|
[5] |
叶远芹, 原思聪, 魏笑笑 , 等. 基于混沌遗传算法的计算机辅助动态布局[J]. 计算机工程与设计, 2017,38(9):2562-2566.
|
|
Ye Yuanqin, Yuan Sicong, Wei Xiaoxiao , et al. Computer-aided dynamic facility layout based on chaos genetic algorithm[J]. Computer Engineering and Design, 2017,38(9):2562-2566.
|
[6] |
李怡弘, 裘炅 . 粒子群蚁群融合算法的火灾救援路径研究[J]. 电子科技, 2018,31(1):58-62.
|
|
Li Yihong, Qiu Jiong . The particle swarm optimization algorithm merged with ant colony optimization algorithm of fire rescue way research[J]. Electronic Science and Technology, 2018,31(1):58-62.
|
[7] |
黄潮 . 云计算环境下的海量光纤通信故障数据挖掘算法研究[J]. 激光杂志, 2017,38(1):96-100.
|
|
Huang Chao . Research on data mining algorithm of massive optical fiber communication in cloud computing environment[J]. Laser Journal, 2017,38(1):96-100.
|
[8] |
Benzi R, Sutera A, Vul Piana A . The mechanism of stochastic resonance[J].Journal of Physics A, 1981(14):L453-L457.
|
[9] |
焦尚彬, 李鹏华, 张青 , 等. 采用知识的粒子群算法的多频微弱信号自适应随机共振检测方法[J]. 机械工程, 2014,50(12):1-10.
|
|
Jiao Shangbin, Li Penghua ,Zhang qing, et al. Multi-frequency weak signal detection method based on adaptive stochastic resonance with knowledge-based PSO[J]. Journal of Mechanical Engineering, 2014,50(12):1-10.
|
[10] |
冷永刚, 赖志慧, 范胜波 , 等. 二维Duffing振子的大参数随机共振及微弱信号检测研究[J]. 物理学报, 2012,61(23):71-80.
|
|
Leng Yonggang, Lai Zhihui, Fan Shengbo , et al. Large parameter stochastic resonance of two-dimensional Duffing oscillator and its application on weak signal detection[J]. Acta Physica Sinica, 2012,61(23):71-80.
|
[11] |
张东, 李金海, 欧松林 , 等. 一种适用于GPS软件信号源的信噪比模拟算法[J]. 微电子学与计算机, 2017,34(3):10-14.
|
|
Zhang Dong, Li Jinhai, Ou Songlin , et al. A signal to noise ratio simulation algorithm applied to gps software signal source[J]. Microelectronics & Computer, 2017,34(3):10-14.
|
[12] |
孟宗, 季艳 . 基于DEMD和对称差分能量算子解调的滚动轴承故障诊断[J]. 中国机械工程, 2015,26(12):1658-1664.
|
|
Meng Zong, Ji Yan . Fault diagnosis of rolling bearings based on DEMD and symmetric difference energy operator demodulation[J].China Mechanical Engineering2015, 26(12):1658-1664.
|
[13] |
刘海波, 玄志武 . 利用微分算子增强EMD算法频带分解能力[J]. 振动与冲击, 2013,32(18):133-135,145.
|
|
Liu Haibo, Xuan Zhiwu . Improving frequency-band separating ability of EMD with a differential operator[J]. Journal of Vibration and Shock, 2013,49(8):10-18.
|
[14] |
赵永威, 周苑, 李弼程 , 等. 基于近义词自适应软分配和卡方模型的图像目标分类方法[J]. 电子学报, 2016,44(9):2181-2188.
|
|
Zhao Yongwei, Zhou Yuan, Li Bicheng . Image object classification method with ho moionym based adaptive soft-assignment and chi-square model[J]. Acta Electronica Sinica, 2016,44(9):2181-2188.
|
[15] |
钱琨 . 基于组合KPCA与改进ELM的工业过程故障诊断研究[D]. 重庆:重庆大学, 2016.
|
|
Qian Kun . Research on industrial process fault diagnosis based on combined KPCA and improved ELM[D]. Chongqing:College of Automation of Chongqing University, 2016.
|
[16] |
王辞 . 基于LCD和PSO-LSSVM的城轨列车滚动轴承故障诊断研究[D]. 北京:北京交通大学, 2016.
|
|
Wang Ci . Research on fault diagnosis of urban rail train rolling bearing based on LCD and PSO-LSSVM[D]. Beijing:Beijing Jiaotong University, 2016.
|
[17] |
赵海君 . 语音识别的SVM模型选择分析[J].电脑知识与技术, 2015(25):133-134.
|
|
Zhao Haijun . Speaker recognition model selection analysis based on SVM[J]. Computer Knowledge and Technology, 2015(25):133-134.
|