[1] |
Marsi N, Majlis B Y, Hamzah A A , et al. Development of high temperature resistant of 500℃ employing silicon carbide (3C-SiC) based MEMS pressure sensor[J]. Microsystem Technologies, 2015,21(2):319-330.
doi: 10.1007/s00542-014-2353-y
|
[2] |
Alexandru M, Banu V, Jordà X , et al. SiC integrated circuit control electronics for high-temperature operation[J]. IEEE Transactions on Industrial Electronics, 2015,62(5):3182-3191.
doi: 10.1109/TIE.2014.2379212
|
[3] |
Marsi N, Majlis B Y, Hamzah A A , et al. High reliability of MEMS packaged capacitive pressure sensor employing 3C-SiC for high temperature[J]. Energy Procedia, 2015,68(2):471-479.
doi: 10.1016/j.egypro.2015.03.279
|
[4] |
Mu F, Iguchi K, Nakazawa H , et al. Direct wafer bonding of SiC-SiC by SAB for monolithic integration of SiC MEMS and electronics[J]. ECS Journal of Solid State Science Technology, 2016,5(9):451-456.
doi: 10.1149/2.0011609jss
|
[5] |
Zhao Feng, Trimble M D . 4H-SiC electrostatic microactuator with optically controlled actuation[J]. Microsystem Technologies, 2017,23(12):5631-5634.
doi: 10.1007/s00542-017-3305-0
|
[6] |
Peri B, Borah B, Dash R K . Effect of RF power and gas flow ratio on the growth and morphology of the PECVD SiC thin film s for MEMS applications[J]. Bulletin of Materials Science, 2015,38(4):1105-1112.
doi: 10.1007/s12034-015-0881-4
|
[7] |
Bo Gao, Tao Chen, Khuat V , et al. Fabrication of grating structures on silicon carbide by femtosecond laser irradiation and wet etching[J]. Chinese Optics Letters, 2016,14(2):021407.
doi: 10.3788/COL201614.021407
|
[8] |
Gang Liu, Yi Xu, Can Xu , et al. Effects and mechanisms of RIE on SiC inversion layer mobility and its recovery[J]. Applied Surface Science, 2015,324(1):30-34.
doi: 10.1016/j.apsusc.2014.10.113
|
[9] |
Li Jingjie, Cheng Xinhong, Wang Qian , et al. Morphology improvement of SiC trench by inductively coupled plasma etching using Ni/Al2O3 bilayer mask[J]. Materials Science in Semiconductor Processing, 2017,67:104-109.
doi: 10.1016/j.mssp.2017.05.022
|
[10] |
Dowling K M, Ransom E H, Senesky D G . Profile evolution of high aspect ratio silicon carbide trenches by inductive coupled plasma etching[J]. Journal of Microelectromechanical Systems, 2017,26(1):135-142.
doi: 10.1109/JMEMS.2016.2621131
|
[11] |
Seidman L A . Formation of three-dimensional structures in the silicon carbide substrates by plasma-chemical etching[J]. Russian Microelectronics, 2016,45(8-9):545-558.
doi: 10.1134/S1063739716080138
|
[12] |
Yuuki Ishida, Sadafumi Yoshida . Investigation of the giant step bunching induced by the etching of 4H-SiC in Ar-H2 mix gases[J]. Japanese Journal of Applied Physics, 2016,55(9):095501.
doi: 10.7567/JJAP.55.095501
|
[13] |
Dong Lin, Sun Guosheng, Yu Jun , et al. Growth of 4H-SiC epilayers with low surface roughness and morphological defects density on 4° off-axis substrates[J]. Applied Surface Science, 2013,270:301-306.
doi: 10.1016/j.apsusc.2013.01.018
|
[14] |
Ekinci H, Kuryatkov V V, Mauch D L , et al. Plasma etching of n-Type 4H-SiC for photoconductive semiconductor switch applications[J]. Journal.Electronic Materials, 2015,44(5):1300-1305.
doi: 10.1007/s11664-015-3658-z
|
[15] |
Choi J H, Romain L L, Bano E , et al. Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching[J]. Journal of Physics D:Application of Physics, 2012,45(23):235204.
doi: 10.1088/0022-3727/45/23/235204
|
[16] |
Shi Baolu, Dai Yifan, Xie Xuhui , et al. Arc-enhanced plasma machining technology for high efficiency machining of silicon carbide[J]. Plasma Chemistry and Plasma Processing, 2016,36(3):891-900.
doi: 10.1007/s11090-016-9695-4
|