Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (2): 52-58.doi: 10.16180/j.cnki.issn1007-7820.2022.02.009
Previous Articles Next Articles
SHAO Zhihui,YANG Jian,YUAN Tianchen,WU Weijia
Received:
2020-10-28
Online:
2022-02-15
Published:
2022-02-24
Supported by:
CLC Number:
SHAO Zhihui,YANG Jian,YUAN Tianchen,WU Weijia. Sleeper Diseases Diagnosis Based on Permutation Entropy and Support Vector Machine[J].Electronic Science and Technology, 2022, 35(2): 52-58.
Table 1.
Simulation data of sleeper vibration response under each spectrum of track irregularity"
列车速度 /(km·h-1) | 轨枕编号 | 轨枕服役状态 | |||
---|---|---|---|---|---|
100 | 51~150 | S1 | S2 | S3 | S4 |
110 | 51~150 | S1 | S2 | S3 | S4 |
120 | 51~150 | S1 | S2 | S3 | S4 |
130 | 51~150 | S1 | S2 | S3 | S4 |
140 | 51~150 | S1 | S2 | S3 | S4 |
150 | 51~150 | S1 | S2 | S3 | S4 |
160 | 51~150 | S1 | S2 | S3 | S4 |
180 | 51~150 | S1 | S2 | S3 | S4 |
200 | 51~150 | S1 | S2 | S3 | S4 |
Table 2.
Permutation entropy of No. 111~120 sleepers in different service states at the train speed of 150 km·h-1"
轨枕号 服役状态 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
---|---|---|---|---|---|---|---|---|---|---|
S1 | 1.389 | 1.412 | 1.369 | 1.436 | 1.356 | 1.419 | 1.373 | 1.391 | 1.377 | 1.371 |
S2 | 1.379 | 1.399 | 1.352 | 1.411 | 1.351 | 1.406 | 1.362 | 1.377 | 1.359 | 1.358 |
S3 | 1.325 | 1.359 | 1.301 | 1.365 | 1.308 | 1.384 | 1.305 | 1.338 | 1.315 | 1.311 |
S4 | 1.269 | 1.304 | 1.252 | 1.291 | 1.271 | 1.314 | 1.267 | 1.286 | 1.268 | 1.261 |
Table 4.
Classification accuracy of different train speeds with different track irregularity spectra"
列车时速 /(km·h-1) | 第一种轨道不平顺谱 激励下识别正确率 | 第二种轨道不平顺谱 激励下识别正确率 | 第三种轨道不平顺谱 激励下识别正确率 | 第四种轨道不平顺谱 激励下识别正确率 | 第五种轨道不平顺谱 激励下识别正确率 |
---|---|---|---|---|---|
100 | 97.5% | 95.0% | 97.5% | 92.5% | 95.0% |
110 | 97.5% | 97.5% | 97.5% | 97.5% | 97.5% |
120 | 95.0% | 97.5% | 95.0% | 95.0% | 97.5% |
130 | 97.5% | 97.5% | 97.5% | 95.0% | 97.5% |
140 | 95.0% | 95.0% | 97.5% | 97.5% | 95.0% |
150 | 97.5% | 97.5% | 97.5% | 95.0% | 95.0% |
160 | 97.5% | 90.0% | 97.5% | 90.0% | 97.5% |
180 | 97.5% | 90.0% | 97.5% | 92.5% | 90.0% |
200 | 97.5% | 95.0% | 90.0% | 90.0% | 92.5% |
[1] | 訾谦. 3.5万km:中国高铁的新跨度[J]. 城市轨道交通研究, 2019, 22(12):6-7. |
Zi Qian. 35 000 km: the new span of China's high-speed rail[J]. Urban Mass Transit, 2019, 22(12):6-7. | |
[2] | 钟鹏飞, 车爱兰, 冯少孔, 等. 高速铁路线下结构典型病害分析及快速无损检测方法研究[J]. 振动与冲击, 2017, 36(11):154-160. |
Zhong Pengfei, Che Ailan, Feng Shaokong, et al. Typical defects' analysis and nondestructive detection method for undertrack structures of high speed railways[J]. Journal of Vibration and Shock, 2017, 36(11):154-160. | |
[3] | 钟志旺, 唐涛, 王峰. 基于PLSA和SVM的道岔故障特征提取与诊断方法研究[J]. 铁道学报, 2018, 40(7):80-87. |
Zhong Zhiwang, Tang Tao, Wang Feng. Research on fault feature extraction and diagnosis of railway switches based on PLSA and SVM[J]. Journal of the China Railway Society, 2018, 40(7):80-87. | |
[4] |
Wirtz S F, Beganovic N, Soffker D. Investigation of damage detectability in composites using frequency-based classification of acoustic emission measurements[J]. Structural Health Monitoring-AN International Journal, 2019, 18(4):1207-1218.
doi: 10.1177/1475921718791894 |
[5] | 张涵, 万振刚. 基于压缩感知与VMD的船舶推进轴系轴承振动故障分析[J]. 舰船电子工程, 2020, 40(1):157-161. |
Zhang Han, Wan Zhengang. Vibration fault analysis of ship propulsion shaft bearings based on compressed sensing and VMD[J]. Ship Electronic Engineering, 2020, 40(1):157-161. | |
[6] | 赵柄锡, 冀大伟, 袁奇, 等. 基于时域与时频域联合特征提取和可分度分析的转子系统碰磨故障诊断[J]. 西安交通大学学报, 2020, 54(1):75-84. |
Zhao Bingxi, Ji Dawei, Yuan Qi, et al. Rubbing fault diagnosis of rotor system based on combined feature extraction and distinguishing analysis in time and time-frequency domain[J]. Journal of Xi'an Jiaotong University, 2020, 54(1):75-84. | |
[7] |
Tayfur S, Alver N, Abdi S, et al. Characterization of concrete matrix/steel fber de-bonding in an SFRC beam: Principal component analysis and k-mean algorithm for clustering AE data[J]. Engineering Fracture Mechanics, 2018, 194(3):73-85.
doi: 10.1016/j.engfracmech.2018.03.007 |
[8] |
曲星宇, 曾鹏, 李俊鹏. 基于RNN-LSTM的磨矿系统故障诊断技术[J]. 信息与控制, 2019, 48(2):179-186.
doi: 10.13976/j.cnki.xk.2019.8365 |
Qu Xingyu, Zeng Peng, Li Junpeng. Fault diagnosis technology of grinding system based on RNN-LSTM[J]. Information and Control, 2019, 48(2):179-186.
doi: 10.13976/j.cnki.xk.2019.8365 |
|
[9] | 苏烨, 李筠, 杨海马, 等. 基于Faster R-CNN的钢轨表面缺陷识别研究[J]. 电子科技, 2020, 33(9):63-68. |
Su Ye, Li Jun, Yang Haima, et al. Research on rail surface defect recognition based on faster R-CNN[J]. Electronic Science and Technology, 2020, 33(9):63-68. | |
[10] | 万东燕, 许桢英, 杨卿, 等. 基于PCA与SVM的焊缝缺陷信号分类方法[J]. 电子科技, 2020, 33(5):9-14. |
Wan Dongyan, Xu Zhenying, Yang Qing, et al. A method of weld defect classification based on PCA and SVM[J]. Electronic Science and Technology, 2020, 33(5):9-14. | |
[11] |
Shah S A A, Habib N, Nadeem M S A, et al. Extraction of dynamical information and classification of heart rate variability signals using scale based permutation entropy measures[J]. Traitement du Signal, 2020, 37(3):355-365.
doi: 10.18280/ts |
[12] |
Keshmiri S. Comparative analysis of the permutation and multiscale entropies for quantification of the brain signal variability in naturalistic scenarios[J]. Brain Sciences, 2020, 10(8):1-38.
doi: 10.3390/brainsci10010001 |
[13] |
Borovsky J E, Osmane A. Compacting the description of a time-dependent multivariable system and its multivariable driver by reducing the state vectors to aggregate scalars: the Earth's solar-wind-driven magnetosphere[J]. Nonlinear Processes in Geophysics, 2019, 26(4):429-443.
doi: 10.5194/npg-26-429-2019 |
[14] | Bandt C, Pompe B. Permutation entropy: A natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17):1741021-1741024. |
[15] | 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2007. |
Zhai Wanming. Vehicle-track coupled dynamics[M]. Beijing: Science Press, 2007. | |
[16] | 武薇, 申永军, 杨绍普. 基于排列熵理论的非线性系统特征提取研究[J]. 振动与冲击, 2020, 39(7):67-73. |
Wu Wei, Shen Yongjun, Yang Shaopu. Feature extraction for nonlinear systems based on permutation entropy theory[J]. Journal of Vibration and Shock, 2020, 39(7):67-73. | |
[17] |
Jiao J Y, Zhao M, Lin J. Unsupervised adversarial adaptation network for intelligent fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11):9904-9913.
doi: 10.1109/TIE.41 |
[18] | 魏禹. 基于熵值的齿轮箱故障特征提取与早期故障诊断方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019. |
Wei Yu. Investigation of fault feature extraction based on entropy and early fault diagnosis for gearbox[D]. Haibin:Harbin Institute of Technology, 2019. |
[1] | WU Weijia,YANG Jian,YUAN Tianchen,SHAO Zhihui. Research on Track Structure Damage Identification Based on Support Vector Machine [J]. Electronic Science and Technology, 2022, 35(2): 27-33. |
[2] | JIN Xiao,WU Fei,YAN Song,LU Wenxia,ZHANG Zhongyi. Fingerprint Location Method of Metro Station Based on GAWK-means [J]. Electronic Science and Technology, 2022, 35(2): 34-39. |
[3] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[4] | XIU Xiaobo,LI Boquan,ZHOU Feng. Optimization of Temperature Sensor Location Based on Genetic Algorithm [J]. Electronic Science and Technology, 2021, 34(9): 17-23. |
[5] | WANG Yang,WANG Yagang. Identification Method Based on Step Response and Genetic Algorithm to Optimize Higher-Order Plus Time-Delay Model [J]. Electronic Science and Technology, 2021, 34(9): 41-46. |
[6] | SI Mingming,CHEN Wei,HU Chunyan,YIN Zhong. Fundus Blood Vessel Image Segmentation Combining Resnet50 and U-Net [J]. Electronic Science and Technology, 2021, 34(8): 19-24. |
[7] | MA Lixin,DOU Chenfei,SONG Chencan,YANG Tianxiao. Insulator Nondestructive Testing Based on Feature Fusion CNN [J]. Electronic Science and Technology, 2021, 34(7): 26-30. |
[8] | CHEN Penggang,FENG Xiaoyi. Animal Disease Diagnosis Algorithm Based on Covering Rough Vague Soft Expert Set [J]. Electronic Science and Technology, 2021, 34(6): 1-10. |
[9] | ZHANG Pengfei,WEI Cunwei,LIU Xiankang,LIU Anran,YANG Ou,LIN Yonglin. Research on Ship Target Recognition Method of Narrowband Radar [J]. Electronic Science and Technology, 2021, 34(6): 50-55. |
[10] | LIU Shu,SHAO Jie,ZHANG Yiting,ZHANG Shanzhang. ECG Classification Based on Bispectrum and Spectral Features [J]. Electronic Science and Technology, 2021, 34(5): 42-46. |
[11] | SONG Zhangming,HE Huiyong,HUANG Yuejun. Study on On-Line Detection of Surface Defects of Flat Enameled Wire [J]. Electronic Science and Technology, 2021, 34(5): 72-78. |
[12] | GE Jing,LIU Zilong. The Algorithm Based on CNN and LSTM for Sleep Apnea Syndrome Detection [J]. Electronic Science and Technology, 2021, 34(2): 21-26. |
[13] | JU Zhiyong,ZHAI Chunyu,ZHANG Wenxin. Color Commodity Label Image Segmentation Method Based on SVM and Region Growth [J]. Electronic Science and Technology, 2021, 34(10): 69-74. |
[14] | JIN Xin,FENG Yi,YOU Xuexi,WANG Jiaxin. Research on Information Security Equipment Deployment Guarantee Technology [J]. Electronic Science and Technology, 2020, 33(8): 80-86. |
[15] | LIU Yanwen,WEI Yun. Research of Emotional Analysis Based on LDA Topic Model [J]. Electronic Science and Technology, 2020, 33(7): 12-16. |
|