Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (4): 20-27.doi: 10.16180/j.cnki.issn1007-7820.2022.04.004
Previous Articles Next Articles
Chaowei LIN,Feifei LI,Qiu CHEN
Received:
2020-11-21
Online:
2022-04-15
Published:
2022-04-15
Supported by:
CLC Number:
Chaowei LIN,Feifei LI,Qiu CHEN. Globaland Local Scene Representation Method Based on Deep Convolutional Features[J].Electronic Science and Technology, 2022, 35(4): 20-27.
Table 1
The accuracy on MIT indoor 67 data set"
识别算法 | 准确度/% |
---|---|
SPM[ | 34.40 |
MOP-CNN[ | 68.88 |
DAG-CNN[ | 77.50 |
SFV[ | 79.00 |
Mix-CNN[ | 79.63 |
MVML-LSTM[ | 80.52 |
Hybrid CNNs[ | 82.24 |
LS-DHM[ | 83.75 |
fgFV[ | 85.35 |
NNSD[ | 85.40 |
Multi-scale CNNs[ | 86.04 |
VSAD[ | 86.20 |
Dual CNN-DL[ | 86.43 |
SDO[ | 86.76 |
Multi-Modal deep architectures[ | 87.10 |
本文基准 (Baseline) | 84.55 |
本文算法 (Proposed method) | 87.59 |
[1] |
Oliva A, Torralba A. Modeling the shape of the scene: A holistic representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3):145-175.
doi: 10.1023/A:1011139631724 |
[2] |
Wu J X, Rehg J M. Centrist: A visual descriptor for scene categorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1489-1501.
doi: 10.1109/TPAMI.2010.224 |
[3] |
Xiao Y, Wu J X, Yuan J S. mCENTRIST: A multi-channel feature generation mechanism for scene categorization[J]. IEEE Transactions on Image Processing, 2014, 23(2):823-836.
doi: 10.1109/TIP.2013.2295756 |
[4] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
[5] | Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]. San Diego:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. |
[6] |
Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987.
doi: 10.1109/TPAMI.2002.1017623 |
[7] |
Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359.
doi: 10.1016/j.cviu.2007.09.014 |
[8] | Sivic J, Zisserman A. Video Google: a text retrieval approach to object matching in videos[C]. Nice:Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003. |
[9] | Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]. New York:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006. |
[10] |
Xie L, Lee F, Liu L, et al. Improved spatial pyramid matching for scene recognition[J]. Pattern Recognition, 2018, 82(1):118-129.
doi: 10.1016/j.patcog.2018.04.025 |
[11] | Perronnin F, Sánchez J, Mensink T. Improving the fisher kernel for large-scale image classification[C]. Heidelberg:Proceedings of the European Conference on Computer Vision, 2010. |
[12] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
doi: 10.1145/3065386 |
[13] |
Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252.
doi: 10.1007/s11263-015-0816-y |
[14] | Gong Y, Wang L, Guo R, et al. Multi-scale orderless pooling of deep convolutional activation features[C]. Zurich:Proceedings of the European Conference on Computer Vision, 2014. |
[15] | Dixit M, Chen S, Gao D, et al. Scene classification with semantic fisher vectors[C]. Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. |
[16] | Xie L, Lee F, Yan Y, et al. Sparse decomposition of convolutional features for scene recognition[C]. Beijing:Proceedings of the Second IEEE International Conference on Computational Intelligence and Applications, 2017. |
[17] | 谢林, 李菲菲, 陈虬. 基于稀疏自动编码机的场景识别算法[J]. 电子科技, 2019, 32(1):38-41. |
Xie Lin, Li Feifei, Chen Qiu. Scene recognition algorithm based on sparse autoencoder[J]. Electronic Science and Technology, 2019, 32(1):38-41. | |
[18] |
Xie L, Lee F F, Liu L, et al. Hierarchical coding of convolutional features for scene recognition[J]. IEEE Transactions on Multimedia, 2020, 22(5):1182-1192.
doi: 10.1109/TMM.2019.2942478 |
[19] | 缪冉, 李菲菲, 陈虬. 基于卷积神经网络与多尺度空间编码的场景识别方法[J]. 电子科技, 2020, 33(12):54-58. |
Miao Ran, Li Feifei, Chen Qiu. Scene recognition algorithm based on convolutional neural networks and multi-scale space encoding[J]. Electronic Science and Technology, 2020, 33(12):54-58. | |
[20] | Liu B, Liu J, Wang J, et al. Learning a representative and discriminative part model with deep convolutional features for scene recognition[C]. Singapore:Proceedings of the Asian Conference on Computer Vision, 2014. |
[21] |
Zhou B, Lapedriza A, Khosla A, et al. Places: A 10 million image database for scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(6):1452-1464.
doi: 10.1109/TPAMI.2017.2723009 |
[22] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[23] | Seong H, Hyun J, Kim E. FOSNet: An end-to-end trainable deep neural network for scene recognition[J]. IEEE Access, 2020(8):82066-82077. |
[24] | Zhao Z, Larson M. From volcano to toyshop: Adaptive discriminative region discovery for scene recognition[C]. Seoul:Proceedings of the Twenty-sixth ACM International Conference on Multimedia, 2018. |
[25] | Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[C]. Las Vegas:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[26] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
pmid: 9377276 |
[27] | Quattoni A, Torralba A. Recognizing indoor scenes[C]. Miami:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. |
[28] | Yang S, Ramanan D. Multi-scale recognition with DAG-CNNs[C]. Boston:Proceedings of the IEEE International Conference on Computer Vision, 2015. |
[29] | Jiang S, Chen G, Song X, et al. Deep patch representations with shared codebook for scene classification[J]. ACM Transactions on Multimedia Computing,Communications, and Applications, 2019, 15(1s):1-17. |
[30] |
Bai S, Tang H, An S. Coordinate CNNs and LSTMs to categorize scene images with multi-views and multi-levels of abstraction[J]. Expert Systems with Applications, 2019, 120(7):298-309.
doi: 10.1016/j.eswa.2018.08.056 |
[31] |
Xie G S, Zhang X Y, Yan S, et al. Hybrid CNN and dictionary-based models for scene recognition and domain adaptation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 27(6):1263-1274.
doi: 10.1109/TCSVT.2015.2511543 |
[32] |
Guo S, Huang W, Wang L, et al. Locally supervised deep hybrid model for scene recognition[J]. IEEE Transactions on Image Processing, 2016, 26(2):808-820.
doi: 10.1109/TIP.2016.2629443 |
[33] |
Pan Y, Xia Y, Shen D. Foreground fisher vector: encoding class-relevant foreground to improve image classification[J]. IEEE Transactions on Image Processing, 2019, 28(10):4716-4729.
doi: 10.1109/TIP.2019.2908795 |
[34] | Herranz L, Jiang S, Li X. Scene recognition with CNNs: objects, scales and dataset bias[C]. Las Vegas:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[35] |
Wang Z, Wang L, Wang Y, et al. Weakly supervised patchnets: Describing and aggregating local patches for scene recognition[J]. IEEE Transactions on Image Processing, 2017, 26(4):2028-2041.
doi: 10.1109/TIP.2017.2666739 pmid: 28207394 |
[36] | Liu Y, Chen Q, Chen W, et al. Dictionary learning inspired deep network for scene recognition[C]. New Orleans:Proceedings of the AAAI Conference on Artificial Intelligence, 2018. |
[37] | Cheng X, Lu J, Feng J, et al. Scene recognition with objectness[J]. Pattern Recognition, 2018, 7(2):474-487. |
[38] | López-Cifuentes A, Escudero-Viñolo M, Bescós J, et al. Semantic-aware scene recognition[J]. Pattern Recognition, 2020, 102(1):1-15. |
[1] | Yanmei YANG,Zongmao CHENG. Prediction of PM2.5 Based on External Influences and Time-Series Factors [J]. Electronic Science and Technology, 2022, 35(3): 51-57. |
[2] | Lingyu JI,Yongbin GAO,Chenglu ZHAO,Xianhua TANG,Kaicheng XU,Jiacheng XU. CTA Segmentation Algorithm of Abdominal Artery Based on 3D Fully Convolutional Network [J]. Electronic Science and Technology, 2022, 35(3): 38-44. |
[3] | ZHANG Shisen,SUN Xiankun,YIN Ling,LI Shixi. Design of Text Title Generation Prototype System Based on Neural Network [J]. Electronic Science and Technology, 2021, 34(5): 35-41. |
[4] | XUE Yongjie,JU Zhiyong. Fish Recognition Algorithm Based on Improved AlexNet [J]. Electronic Science and Technology, 2021, 34(4): 12-17. |
[5] | YAN Shuhao,QIAO Meiying. Bearing Fault Diagnosis Algorithm Based on One-Dimensional WConv-BiLSTM [J]. Electronic Science and Technology, 2021, 34(4): 75-82. |
[6] | GE Jing,LIU Zilong. The Algorithm Based on CNN and LSTM for Sleep Apnea Syndrome Detection [J]. Electronic Science and Technology, 2021, 34(2): 21-26. |
[7] | ZHANG Zhenwei, ZHANG Wei, LONG Lin, YAN Chenhang. 3D Map Construction of Micro UAV Based on Depth Camera [J]. Electronic Science and Technology, 2021, 34(1): 65-70. |
[8] | LI Fupeng,FU Dongxiang. Sentiment Analysis Method of Financial Text Based on Transformer Encoder [J]. Electronic Science and Technology, 2020, 33(9): 10-15. |
[9] | MIAO Ran,LI Feifei,CHEN Qiu. Scene Recognition Algorithm Based on Convolutional Neural Networks and Multi-Scale space Encoding [J]. Electronic Science and Technology, 2020, 33(12): 54-58. |
[10] | QI Xin,WANG Fuzhong,ZHANG Li,WANG Rui,WANG Xiaohui. Air Conditioning Load Forecast of University Students' Dormitory Based on SVD-LSTM [J]. Electronic Science and Technology, 2020, 33(11): 59-66. |
[11] | ZHENG Meng. Research on Intelligent English Translation Method Based on Improved Attention Mechanism Model [J]. Electronic Science and Technology, 2020, 33(11): 84-87. |
[12] | TIAN Xiong,WU Wei,LIU Xiaoshang,WU Xiu. Multi-face Tracking and Optimal Face Extraction [J]. Electronic Science and Technology, 2019, 32(9): 32-37. |
[13] | TENG Shuo,WANG Runling. Real-time Tracking Algorithm Based on Adaptive Model Update [J]. Electronic Science and Technology, 2019, 32(7): 11-16. |
[14] | JIANG Meng,WANG Ziniu,GAO Jianling. Chinese Word Segmentation Based on Joint Training of Heterogeneous Data [J]. Electronic Science and Technology, 2019, 32(4): 29-33. |
[15] | MENG Xin. Research on Recognition Method of Legal Documents Based on Deep Learning [J]. Electronic Science and Technology, 2019, 32(12): 84-86. |
|