[1] |
陈万青, 李霓, 石菊芳, 等. 中国城市癌症早诊早治项目进展[J]. 中国肿瘤, 2019, 28(1):23-25.
|
|
Chen Wanqing, Li Ni, Shi Jufang, et al. Progress of cancer screening program in urban China[J]. China Cancer, 2019, 28(1):23-25.
|
[2] |
魏文强, 沈洪兵. 中国癌症防控历史、现状与展望[J]. 中华疾病控制杂志, 2019, 23(10):1165-1168.
|
|
Wei Wenqiang, Shen Hongbing. The history, present and prospect of cancer prevention and control in China[J]. Chinese Journal of Disease Control & Prevention, 2019, 23(10):1165-1168.
|
[3] |
张驰名, 王庆凤, 刘志勤, 等. 基于深度迁移学习的肺结节辅助诊断方法[J]. 计算机工程, 2020, 46(1):271-278.
|
|
Zhang Chiming, Wang Qingfeng, Liu Zhiqin, et al. Pulmonary nodule auxiliary diagnosis method based on deep transfer learning[J]. Computer Engineering, 2020, 46(1):271-278.
|
[4] |
Atencio Ortiz P, Sanchez Torres G, Jhonw B B, et al. Evaluating supervised learning approaches for spatial-domain multi-focus image fusion[J]. Dyna, 2017, 84(2):137-146.
doi: 10.15446/dyna.v84n202.63389
|
[5] |
Park C M. Dam sensor outlier detection using mixed prediction model and supervised learning[J]. International Journal of Advanced Smart Convergence, 2018, 7(1):533-542.
|
[6] |
张鹏, 徐欣楠, 王洪伟, 等. 基于深度学习的计算机辅助肺癌诊断方法[J]. 计算机辅助设计与图形学学报, 2018, 30(1):90-99.
|
|
Zhang Peng, Xu Xinnan, Wang Hongwei, et al. Computer-aided lung cancer diagnosis approaches based on deep learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 29(1):90-99.
|
[7] |
张福玲, 张少敏. 应用于CT图像肺结节检测的深度学习方法综述[J]. 计算机工程与应用, 2020, 56(13):20-32.
|
|
Zhang Fulin, Zhang Shaomin. Review of deep learning methods applied to lung nodule detection in CT images[J]. Computer Engineering and Applications, 2020, 56(13):20-32.
|
[8] |
刘海东, 杨小渝, 朱林忠. 基于生成对抗网络的乳腺癌病理图像可疑区域标记[J]. 数据与计算发展前沿, 2017, 8(6):52-64.
|
|
Liu Haidong, Yang Xiaoyu, Zhu Linzhong. Generative adversarial network based breast cancer pathological image suspicious region labeling[J]. Frontiers of Data & Computing, 2017, 8(6):52-64.
|
[9] |
惠国保, 童一飞, 李东波. 基于改进的图像局部区域相似度学习架构的图像特征匹配技术研究[J]. 计算机学报, 2015, 38(6):1148-1161.
|
|
Hui Guobao, Tong Yifei, Li Dongbo. Image features matching based on improved patch similarity learning framework[J]. Chinese Journal of Computers, 2015, 38(6):1148-1161.
|
[10] |
李照奎, 丁立新, 王岩, 等. 基于差值局部方向模式的人脸特征表示[J]. 软件学报, 2015, 26(11):2912-2929.
|
|
Li Zhaokui, Ding Lixin, Wang Yan, et al. Face feature representation based on difference local directional pattern[J]. Journal of Software, 2015, 26(6):2912-2929.
|
[11] |
李鱼强, 潘天红, 李浩然, 等. 近红外光谱LASSO特征选择方法及其聚类分析应用研究[J]. 光谱学与光谱分析, 2019, 39(12):3809-3815.
doi: 10.3964/j.issn.1000-0593(2019)12-3809-07
|
|
Li Yuqiang, Pan Tianhong, Li Haoran, et al. NIR spectral feature selection using lasso method and its application in the classification analysis[J]. Spectroscopy and Spectral Analysis, 2019, 39(12):3809-3815.
doi: 10.3964/j.issn.1000-0593(2019)12-3809-07
|
[12] |
刘照德, 詹秋泉, 田国梁. 因子分析综合评价研究综述[J]. 统计与决策, 2019, 35(19):68-73.
|
|
Liu Zhaode, Zhan Qiuquan, Tian Guoliang. Research review on comprehensive evaluation of factor analysis[J]. Statistics & Decision, 2019, 35(19):68-73.
|
[13] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251.
|
|
Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutionalneural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.
|
[14] |
池昊宇, 陈长波. 基于神经网络的循环分块大小预测[J]. 计算机科学, 2020, 47(8):62-70.
|
|
Chi Haoyu, Chen Changbo. Prediction of loop tiling size based on neural network[J]. Computer Science, 2020, 47(8):62-70.
|
[15] |
彭璟, 罗浩宇, 赵淦森, 等. 深度学习下的医学影像分割算法综述[J]. 计算机工程与应用, 2021, 57(3):44-57.
|
|
Peng Jing, Luo Haoyu, Zhao Gansen, et al. Survey of medical image segmentation algorithm in deep learning[J]. Computer Engineering and Applications, 2021, 57(3):44-57.
|
[16] |
王丽会, 秦永彬. 深度学习在医学影像中的研究进展及发展趋势[J]. 大数据, 2020, 6(6):83-104.
|
|
Wang Lihui, Qin Yongbin. State of the art and future perspectives of the applications of deep learning in the medical image analysis[J]. Big Data Research, 2020, 6(6):83-104.
|