[1] |
Thamrin R, Zaidir Z, Desharma S. Debonding failure analysis of reinforced concrete beams strengthened with CFRP plates[J]. Polymers, 2021, 13(16):1-20.
doi: 10.3390/polym13010001
|
[2] |
王梓尧, 严刚. 基于Lamb波的复合材料结构分层损伤扩展监测研究[J]. 复合材料科学与工程, 2020(7):20-26.
|
|
Wang Ziyao, Yan Gang. Monitoring of delamination growth for composite structure by using lamb waves[J]. Composite Materials and Engineering, 2020(7): 20-26.
|
[3] |
李明轩, 王小民, 安志武. 粘接界面特性的超声检测与评价[J]. 应用声学, 2013(3):190-198.
|
|
Li Mingxuan, Wang Xiaomin, An Zhiwu. Ultrasonic testing and evaluation of bonding interface properties[J]. Applied Acoustics, 2013(3):190-198.
|
[4] |
包乌云. 微波无损检测消声瓦贴质量中若干问题的研究[D]. 上海: 华东师范大学, 2003:5-13.
|
|
Bao Wuyun. Microwave nondestructive testing of anechoic tile quality in a number of issues[D]. Shanghai: East China Normal University, 2003:5-13.
|
[5] |
骆英, 李峰忠, 徐晨光. Lamb波频域逆散射全聚焦成像方法研究[J]. 实验力学, 2021, 36(2):195-204.
|
|
Luo Ying, Li Fengzhong, Xu Chenguang. Research on frequency-domain inverse scattering total focus method based on Lamb wave[J]. Journal of Experimental Mechanics, 2021, 36(2):195-204.
|
[6] |
杜晗, 许桢英. 超声导波焊缝检测中阵列式传感器的信号融合方式研究[J]. 电子科技, 2020, 33(7):32-36.
|
|
Du Han, Xu Zhenying. The research of ultrasonic wave signal fusion on array sensors in weld detection[J]. Electronic Science and Technology, 2020, 33(7):32-36.
|
[7] |
沈成业, 洪朝, 黄海军, 等. 焊缝缺陷的全聚焦相控阵成像检测[J]. 无损检测, 2020, 42(9):45-49.
|
|
Shen Chengye, Hong Chao, Huang Haijun, et al. Weld defects detection using TFM phased array imaging technique[J]. Nondestructive Testing, 2020, 42(9):45-49.
|
[8] |
Zhang H, Liu Y, Fan G, et al. Sparse-TFM imaging of Lamb waves for the near-distance defects in plate-like structures[J]. Metals, 2019, 9(5):1-13.
doi: 10.3390/met9010001
|
[9] |
He J, Yuan F. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan[J]. Smart Materials and Structures, 2016, 25(10): 1-11.
|
[10] |
Zhou K, Zheng Y, Zhang J, et al. A reconstruction-based mode separation method of Lamb wave for damage detection in plate structures[J]. Smart Materials and Structures, 2019, 28(3):1-10.
|
[11] |
Born M, Wolf E. Principles of optics-electromagnetic theory of propagation, interference and diffraction of light[M]. Cambridge: Cambridge University Press, 1999: 461-465.
|
[12] |
Small A, Ilev I, Chernomordik V, et al. Enhancing diffraction-limited images using properties of the point spread function[J]. Optics Express, 2006, 14(8):3193-3203.
pmid: 19516461
|
[13] |
Gruber F K, Marengo E A, Devaney A J. Time-reversal imaging with multiple signal classification considering multiple scattering, between the targets[J]. Journal of the Acoustical Society of America, 2004, 115(6):3042-3047.
doi: 10.1121/1.1738451
|
[14] |
Labyed Y, Huang L J. Ultrasound time-reversal music imaging with diffraction and attenuation compensation[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2012, 59(10): 2186-2200.
|
[15] |
Singh R, Wu W, Wang G, et al. Artificial intelligence in image reconstruction: The change is here[J]. Physica Medica-European Journal of Medical Physics, 2020, 79(2):113-125.
|
[16] |
Shende P, Pawar M, Kakde S. A brief review on: MRI images reconstruction using GAN[C]. Chennai: Proceedings of the International Conference on Communication and Signal Processing, 2019:139-142.
|
[17] |
Ben Yedder H, Cardoen B, Hamarneh G. Deep learning for biomedical image reconstruction: A survey[J]. Artificial Intelligence Review, 2021, 54(1):215-251.
doi: 10.1007/s10462-020-09861-2
|
[18] |
Shen Q, Yue S, Lu W, et al. Ultrasonic guided wave damage detection method for stiffened plates based on deep learning[C]. Xi'an: Proceedings of the International Conference on Intelligent Control, Measurement and Signal Processing and Intelligent Oil Field, 2021:1-6.
|
[19] |
梁波, 卢军, 曹阳. 基于改进U-Net卷积神经网络的钢轨表面损伤检测方法[J]. 激光与光电子学进展, 2021, 58(2):334-340.
|
|
Liang Bo, Lu Jun, Cao Yang. Rail surface damage detection method based on improved U-Net convolutional neural network[J]. Laser & Optoelectronics Progress, 2021, 58(2):334-340.
|
[20] |
Umehara K, Ota J, Ishida T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT[J]. Journal of Digital Imaging, 2018, 31(4):441-450.
doi: 10.1007/s10278-017-0033-z
pmid: 29047035
|
[21] |
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Lille: Proceedings of the International Conference on Machine Learning, 2015:1-11.
|
[22] |
Goodfellow I, Bengio Y, Courville A. Deep learning[M]. Cambridge: MIT Press, 2016:326-366.
|
[23] |
Zeiler M D, Taylor G W, Fergus R, et al. Adaptive deconvolutional networks for mid and high level feature learning[C]. New York: Proceedings of the IEEE International Conference on Computer Vision, 2011:2018-2025.
|
[24] |
Wang Z, Chen J, Hoi SCH. Deep learning for image super-resolution: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365-3387.
doi: 10.1109/TPAMI.2020.2982166
|
[25] |
周雷, 徐桂东. 基于超声逆散射模型的损伤定量成像研究[J]. 电子测量技术, 2019, 42(19):1-5.
|
|
Zhou Lei, Xu Guidong. Research on quantitative imaging of damage based on ultrasonic inverse scattering model[J]. Electronic Measurement Technology, 2019, 42(19):1-5.
|