Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (5): 9-17.doi: 10.16180/j.cnki.issn1007-7820.2024.05.002
Previous Articles Next Articles
FANG Shuai, CHEN Xu, LI Kangji
Received:
2022-12-09
Online:
2024-05-15
Published:
2024-05-21
Supported by:
CLC Number:
FANG Shuai, CHEN Xu, LI Kangji. A Q-Learning Differential Evolution Algorithm for Combined Heat and Power Dynamic Economic Emission Dispatch[J].Electronic Science and Technology, 2024, 37(5): 9-17.
Table 2.
Power and heat requirements of system one"
时间 /h | 电力需求 /MW | 热量需求 /MWth | 时间 /h | 电力需求 /MW | 热量需求 /MWth |
---|---|---|---|---|---|
1 | 1 036 | 390 | 13 | 2 072 | 470 |
2 | 1 110 | 400 | 14 | 1 924 | 460 |
3 | 1 258 | 410 | 15 | 1 776 | 450 |
4 | 1 406 | 420 | 16 | 1 554 | 450 |
5 | 1 480 | 440 | 17 | 1 480 | 420 |
6 | 1 628 | 450 | 18 | 1 628 | 435 |
7 | 1 702 | 450 | 19 | 1 776 | 445 |
8 | 1 776 | 455 | 20 | 1 972 | 450 |
9 | 1 924 | 460 | 21 | 1 924 | 445 |
10 | 2 022 | 460 | 22 | 1 628 | 435 |
11 | 2 106 | 470 | 23 | 1 332 | 400 |
12 | 2 150 | 480 | 24 | 1 184 | 400 |
Table 3.
Results of economic emission dispatch for CHPDEED system one"
TV-MOPSO | GDE3 | NSGA-II-DE | MODE-RMO | QLMDOE | ||
---|---|---|---|---|---|---|
经济调度 | 花费/美元 | 2 571 077.76 | 2 601 166.27 | 2 570 790.17 | 2 586 935.69 | 2 568 391.84 |
排放/kg | 268 580.93 | 288 674.01 | 279 342.01 | 279 073.88 | 268 279.16 | |
排放调度 | 花费/美元 | 2 654 159.60 | 2 692 465.06 | 2 692 234.83 | 2 691 947.73 | 2 682 440.57 |
排放/kg | 250 458.36 | 255 900.25 | 248 606.82 | 254 109.93 | 246 147.21 | |
经济排放调度 | 花费/美元 | 2 598 219.81 | 2 611 266.56 | 2 600 049.17 | 2 606 718.77 | 2 597 173.09 |
排放/kg | 256 965.00 | 271 013.55 | 260 177.24 | 265 514.19 | 256 638.51 | |
时间/s | 884.65 | 549.20 | 584.01 | 888.32 | 660.29 |
Table 4.
Statistical results of the performance metrics for CHPDEED system one"
指标 | 算法 | MIN | MEAN | MAX | STD | Sig. |
---|---|---|---|---|---|---|
HV | TVMOPSO | 0.024 8 | 0.025 5 | 0.026 1 | 0.000 3 | + |
GDE3 | 0.021 5 | 0.022 4 | 0.022 9 | 0.000 4 | + | |
NSGA-II-DE | 0.025 3 | 0.026 0 | 0.026 8 | 0.000 3 | + | |
MODE-RMO | 0.022 5 | 0.023 1 | 0.024 0 | 0.000 4 | + | |
QLMODE | 0.026 3 | 0.026 9 | 0.027 6 | 0.000 4 | ||
IGD | TVMOPSO | 5 428.856 1 | 9 173.081 3 | 13 339.615 5 | 1 968.893 5 | + |
GDE3 | 13 765.600 8 | 18 296.121 3 | 23 561.906 5 | 2 109.964 2 | + | |
NSGA-II-DE | 3 735.038 7 | 5 957.392 7 | 8 399.362 4 | 1 277.406 4 | + | |
MODE-RMO | 12 970.203 4 | 15 633.338 8 | 18 384.426 1 | 1 446.620 2 | + | |
QLMODE | 1 469.630 7 | 3 883.327 9 | 6 476.832 7 | 1 327.309 0 |
Table 5.
Power and heat requirements of system two"
时间 /h | 电力需求 /MW | 热量需求 /MWth | 时间 /h | 电力需求 /MW | 热量需求 /MWth |
---|---|---|---|---|---|
1 | 3 108 | 1 170 | 13 | 6 216 | 1 410 |
2 | 3 330 | 1 200 | 14 | 5 772 | 1 380 |
3 | 3 774 | 1 230 | 15 | 5 328 | 1 350 |
4 | 4 218 | 1 260 | 16 | 4 662 | 1 350 |
5 | 4 440 | 1 320 | 17 | 4 440 | 1 260 |
6 | 4 884 | 1 350 | 18 | 4 884 | 1 305 |
7 | 5 106 | 1 350 | 19 | 5 328 | 1 335 |
8 | 5 328 | 1 365 | 20 | 5 916 | 1 350 |
9 | 5 772 | 1 380 | 21 | 5 772 | 1 335 |
10 | 6 066 | 1 380 | 22 | 4 884 | 1 305 |
11 | 6 318 | 1 410 | 23 | 3 996 | 1 200 |
12 | 6 450 | 1 440 | 24 | 3 552 | 1 200 |
Table 6.
Results of economic emission dispatch for CHPDEED system two"
TV-MOPSO | GDE3 | NSGA-II-DE | MODE-RMO | QLMDOE | ||
---|---|---|---|---|---|---|
经济调度 | 花费/美元 | 7 428 285.76 | 7 608 953.99 | 7 373 114.36 | 7 596 409.06 | 7 336 747.55 |
排放/kg | 713 262.09 | 776 004.69 | 770 801.48 | 774 150.25 | 769 256.11 | |
排放调度 | 花费/美元 | 7 641 683.81 | 7 960 837.33 | 7 734 528.20 | 7 917 340.91 | 7 725 719.38 |
排放/kg | 672 885.01 | 703 802.05 | 674 066.75 | 700 204.78 | 661 161.36 | |
经济排放调度 | 花费/美元 | 7 441 042.62 | 7 633 185.95 | 7 452 468.02 | 7 617 008.05 | 7 428 286.78 |
排放/kg | 706 826.79 | 746 138.05 | 711 124.59 | 740 809.14 | 701 931.62 | |
时间/s | 2 702.51 | 2 647.14 | 2 656.14 | 2 597.03 | 2 750.26 |
Table 7.
Statistical results of the performance metrics for CHPDEED system 2"
指标 | 算法 | MIN | MEAN | MAX | STD | Sig. |
---|---|---|---|---|---|---|
HV | TVMOPSO | 0.023 3 | 0.024 1 | 0.024 7 | 0.000 3 | + |
GDE3 | 0.014 9 | 0.015 5 | 0.016 0 | 0.000 3 | + | |
NSGA-II-DE | 0.023 7 | 0.024 4 | 0.025 0 | 0.000 3 | + | |
MODE-RMO | 0.016 0 | 0.016 6 | 0.017 2 | 0.000 4 | + | |
QLMODE | 0.026 6 | 0.027 0 | 0.027 4 | 0.000 2 | ||
IGD | TVMOPSO | 21 763.739 4 | 32 689.357 8 | 40 875.839 6 | 4 771.838 2 | + |
GDE3 | 148 934.550 5 | 175 504.554 0 | 200 852.745 4 | 11 252.548 3 | + | |
NSGA-II-DE | 20 041.296 2 | 26 890.651 4 | 32 933.353 5 | 3 457.244 3 | + | |
MODE-RMO | 135 719.617 5 | 151 095.603 0 | 165 686.411 4 | 9 395.289 7 | + | |
QLMODE | 2 042.593 9 | 5 149.226 9 | 8 596.482 7 | 1 612.409 9 |
[1] |
杨德友, 刘世宇. 求解电力系统多目标环境经济调度的帕累托最优MFO算法[J]. 电工电能新技术, 2018, 37(2):30-37.
doi: 10.12067/ATEEE1706064 |
Yang Deyou, Liu Shiyu. Multi-objective economic-enviro-nmental dispatch based on Pareto optimal moth-flame optimization algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(2):30-37.
doi: 10.12067/ATEEE1706064 |
|
[2] | 王玉梅, 张继钦, 周永鑫. 计及碳交易和价格型需求响应的热电联合低碳经济调度[J]. 电子科技, 2023, 36(10):74-81. |
Wang Yumei, Zhang Jiqin, Zhou Yongxin. Combined heat and power low-carbon economic scheduling consideringcarbon trading and price demand response[J]. Eletronic Science and Techonolgy, 2023, 36(10):74-81. | |
[3] | Guo T, Henwood M I, Van Ooijen M. An algorithm for combined heat and power economic dispatch[J]. IEEE Transactions on Power Systems, 1996, 11(4):1778-1784. |
[4] | Narang N, Sharma E, Dhillon J S. Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell's pattern search method[J]. Applied Soft Computing, 2017, 52(1):190-202. |
[5] | Nasir M, Sadollah A, Aydilek Í B, et al. A combination of FA and SRPSO algorithm for combined heat and power economic dispatch[J]. Applied Soft Computing, 2021, 102(1):88-98. |
[6] | Khalili M, Nikoukar J, Sedighizadeh M. Combined heat and power economic dispatch using improved shuffled frog leaping algorithm[J]. Journal of Advances in Computer Research, 2021, 12(1):1-11. |
[7] | Zou D, Li S, Kong X, et al. Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy[J]. Applied Energy, 2019, 237(1):646-670. |
[8] | Sundaram A. Multiobjective multiverse optimization algorithm to solve combined economic,heat and power emission dispatch problems[J]. Applied Soft Computing, 2020, 91(1):6195-6209. |
[9] | Xiong G, Shuai M, Hu X. Combined heat and power economic emission dispatch using improved bare-bone multiobjective particle swarm optimization[J]. Energy, 2022, 244(1):3108-3127. |
[10] | Jadoun V K, Prashanth G R, Joshi S S, et al. Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled whale optimization algorithm[J]. Applied Energy, 2022, 315(1):33-50. |
[11] | Niknam T, Azizipanah-Abarghooee R, Roosta A, et al. A new multiobjective reserve constrained combined heatand power dynamic economic emission dispatch[J]. Energy, 2012, 42(1):530-545. |
[12] | Elaiw A M, Xia X, Shehata A M. Combined heat and power dynamic economic dispatch with emission limitations using hybrid DE-SQP method[J]. Abstract and Applied Analysis, 2013(7):1-10. |
[13] | Basu M. Combined heat and power economic emission dispatch using nondominated sorting genetic algorithm-II[J]. International Journal of Electrical Power and Energy Systems, 2013, 53(1):135-141. |
[14] | Alomoush M I. Application of the stochastic fractal search algorithm and compromise programming to combined heat and power economic-emission dispatch[J]. Engineering Optimization, 2020, 52(11):1992-2010. |
[15] | Chen X, Li K, Xu B, et al. Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem[J]. Knowledge-Based Systems, 2020, 208(15):106463-106469. |
[16] |
赖俊, 魏竞毅, 陈希亮. 分层强化学习综述[J]. 计算机工程与应用, 2021, 57(3):72-79.
doi: 10.3778/j.issn.1002-8331.2010-0038 |
Lai Jun, Wei Jingyi, Chen Xiliang. Overview of hierarchical reinforcement learnin[J]. Computer Engineering and Applications, 201, 57(3):72-79. | |
[17] | 郑敦勇, 姚宜斌, 聂文锋, 等. 基于机器学习集成算法的电离层层析算法迭代初值精化[J]. 地球物理学报, 2022, 65(8):2796-2812. |
Zheng Dunyong, Yao Yibin, Nie Wenfeng, et al. Iterative initial value refinement of ionospheric tomography algorithm based on machine learning ensemble algorithm[J]. Chinese Journal of Geophysics, 2022, 65(8):2796-2812. | |
[18] | Hu Z, Gong W, Li S. Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models[J]. Energy Reports, 2021(7):916-928. |
[19] |
张秦浩, 敖百强, 张秦雪. Q-learning强化学习制导律[J]. 系统工程与电子技术, 2020, 42(2):414-419.
doi: 10.3969/j.issn.1001-506X.2020.02.21 |
Zhang Qinhao, Ao Baiqiang, Zhang Qinxue. Reinforcemen tlearning guidance law of Q-learning[J]. Systems Engineering and Electronics, 2020, 42(2):414-419.
doi: 10.3969/j.issn.1001-506X.2020.02.21 |
|
[20] | Watkins C J C H, Dayan P. Q-learning[J]. Machine Learning, 1992, 8(3):279-292. |
[21] | 葛传九, 武鹏, 金俊喆, 等. 基于改进差分进化算法的光伏最大功率点跟踪[J]. 电子科技, 2022, 35(9):15-21. |
Ge Chuanjiu, Wu Peng, Jin Junzhe, et al. Photovoltaic maximum power point tracking based on improved differential evolution algorithm[J]. Electronic Science and Technology, 2022, 35(9):15-21. | |
[22] | 冯士刚, 艾芊. 带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用[J]. 电工技术学报, 2007(12):146-151. |
Feng Shigang, Ai Qian. Application of fast and elitist non-dominated sorting generic algorithm in multiobjective reactive power optimization[J]. Transaction of China Electrotechnical Society, 2007(12):146-151. | |
[23] | Shaabani Y A, Seifi A R, Kouhanjani M J. Stochastic multiobjective optimization of combined heat and power economic/emission dispatch[J]. Energy, 2017, 141(15):1892-1904. |
[24] | Kukkonen S, Lampinen J. GDE3:The third evolution step of generalized differential evolution[C]. Edinburgh: IEEE Congress on Evolutionary Computation, 2005:117-128. |
[25] | Li H, Zhang Q. Multi-objective optimization problems with complicated Pareto sets,MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2008, 13(2):284-302. |
[26] | Chen X, Du W, Qian F. Multi-objective differential evolution with ranking-based mutation operator and it's application in chemical process optimization[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 136(15):85-96. |
[27] | Zitzler E, Thiele L. Multi-objective evolutionary algorithms:A comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4):257-271. |
[28] | Coello C A C, Cortés N C. Solving multi-objective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6(2):163-190. |
[1] | NIE Chunfang, HAO Zhenghang, CHEN Zhuo, HE Puxiang. Research on Electromagnetic Transient Acceleration Simulation Technoloy of New-Type Power System [J]. Electronic Science and Technology, 2024, 37(3): 18-25. |
[2] | ZHANG Haifang,HE Qinglong,ZHANG Lin. Power Load Forecasting Model Based on Expansion Period [J]. Electronic Science and Technology, 2024, 37(2): 1-5. |
[3] | SUO Fangfei,JI Yunfeng. Review of the Research on the Core Algorithm of Table Tennis Robot [J]. Electronic Science and Technology, 2023, 36(12): 16-24. |
[4] | GE Chuanjiu,WU Peng,JIN Junzhe,DONG Xiangxiang,LOU Qikai. Photovoltaic Maximum Power Point Tracking Based on Improved Differential Evolution Algorithm [J]. Electronic Science and Technology, 2022, 35(9): 15-21. |
[5] | ZHANG Ye,BAO Liang. Research Progress of Service Composition Based on Machine Learning [J]. Electronic Science and Technology, 2022, 35(11): 58-63. |
[6] | ZHANG Jiapeng,LI Lin,ZHU Ye. A Review of Research on Decision-Making Method of Autonomous Vehicle Based on Reinforcement Learning [J]. Electronic Science and Technology, 2021, 34(5): 66-71. |
[7] | YANG Haizhu,JIANG Zhaoyang,LI Menglong,KANG Le. Parameters Selection for LSSVM Based on Artificial Fish Swarm-Shuffled Frog Jump Algorithms Optimization in Short-Term Load Forecasting [J]. Electronic Science and Technology, 2020, 33(12): 67-74. |
[8] | SUN Jing,ZHU Jun,LIU Hua,WANG Canxia. Research on UAV Application of Magnetic Resonance Coupling Wireless Power Transmission System [J]. Electronic Science and Technology, 2019, 32(4): 49-53. |
[9] | BING Xiaofeng,TAO Yifei,DONG Yuanyuan,SUN Sihan. Solving the Problem of Replacement Flow Shop Scheduling Based on Improved Cuckoo Algorithm [J]. Electronic Science and Technology, 2019, 32(10): 60-64. |
[10] | YANG Jun,WEI Jingxuan. Adaptive Differential Evolution Algorithm Based on Gradient Search Strategy [J]. , 2016, 29(1): 25-. |
[11] | MA Lixin,ZHENG Xiaodong,YIN Jingjing. Short-term Load Forecasting Based on Rough Characteristic-component Algorithm [J]. , 2016, 29(1): 40-. |
[12] | MA Lixin,LUAN Jian,WANG Jiyin. Three-objective Cauchy Particle Swarm Optimization for Reactive Power Optimization [J]. , 2015, 28(9): 42-. |
[13] | BO Pingping,GONG Rujiang. A New Algorithm for OFDM Multi-Band Joint Spectrum Sensing [J]. , 2015, 28(8): 130-. |
[14] | LI Hongda,LI Xin,Alexander G Lyublinsky,Sergey V Korotkov,ZHAO Hongyang,CHE Long. RSD Based Generators for the Pulse of Broken Concrete Crushing Experiment and Simulation [J]. , 2015, 28(5): 53-. |
[15] | HU Yajun,CHEN Qing. Application of Image Watermark Technology in the Electric Power System [J]. , 2015, 28(4): 149-. |
|