Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (12): 16-24.doi: 10.16180/j.cnki.issn1007-7820.2023.12.003
Previous Articles Next Articles
SUO Fangfei1,JI Yunfeng2
Received:
2022-06-29
Online:
2023-12-15
Published:
2023-12-05
Supported by:
CLC Number:
SUO Fangfei,JI Yunfeng. Review of the Research on the Core Algorithm of Table Tennis Robot[J].Electronic Science and Technology, 2023, 36(12): 16-24.
Table 4.
Summary of the return strategy method based on learning algorithm"
作者 | 学会定点回 球的效率 | 方法 | 性能评价 |
---|---|---|---|
文献[ | 超过20 000 回合 | 基于蒙特卡洛的 强化学习算法(仿 真环境下) | 误差小于0.05 m, 成功率99.22% |
文献[ | 7 000条轨 迹数据 | 通过人类演示训 练动力学模型、虚 拟现实环境 | 误差小于0.2 m, 成功率86.7% |
文献[ | 200个回合 以内 | 改进的DDPG算法 | 误差小于0.2 m, 成功率98% |
文献[ | 超过70万 个回合 | 改进的DDPG算法 (仿真环境下) | 误差小于0.05 m, 成功率100% |
文献[ | 50 000回合 (回击旋转球) | 改进的DDPG算法、 LSTM网络 | 旋转球回球成功 率高于70% |
[1] | Lewis F L, Ge S S. Autonomous mobile robots:Sensing,control,decision making and application[M]. Boca Raton: CRC Press, 2018:1-2. |
[2] | 章逸丰. 快速飞行物体的状态估计和轨迹预测[D]. 杭州: 浙江大学, 2015:1-7. |
Zhang Yifeng. State estimation and trajectory prediction of fast flying object[D]. Hangzhou: Zhejiang University, 2015:1-7. | |
[3] | Liu C F. On a modified method of measuring the rotational speed of a table tennis ball[C]. Taipei: Proceedings of SICE Annual Conference, 2010:1567-1572. |
[4] | 季云峰, 陆爱发, 任杰, 等. 基于乒乓球机器人视觉系统的单色乒乓球旋转三维速度测定[J]. 上海体育学院学报, 2017, 41(3):83-88. |
Ji Yunfeng, Lu Aifa, Ren Jie, et al. 3D velocity measurement of single-color table tennis rotation based on visual system of table tennis robot[J]. Journal of Shanghai University of Sport, 2017, 41(3):83-88. | |
[5] | 季云峰, 施之皓, 任杰, 等. 基于单目视觉伺服系统的高速旋转球体三维速度测定[J]. 中国体育科技, 2017, 53(2):139-145. |
Ji Yunfeng, Shi Zhihao, Ren Jie, et al. 3D velocity meas-urement of high-speed rotating sphere based on the monocular vision servo system[J]. China Sport Scienceand Technology, 2017, 53(2):139-145. | |
[6] | Nonomura J, Nakashima A, Hayakawa Y. Analysis of effects of rebounds and aerodynamics for trajectory of table tennis ball[C]. Taipei: Proceedings of SICE Annual Conference, 2010:1567-1572. |
[7] | Tamaki T, Wang H, Raytchev B, et al. Estimating the spin of a table tennis ball using inverse compositional image alignment[C]. Kyoto: IEEE International Conference on Acoustics,Speech and Signal Processing, 2012:1457-1460. |
[8] | 张传伟, 王京梅, 林晓明, 等. 基于背景差分的一种运动目标检测方法[J]. 电子科技, 2015, 28(10):69-71. |
Zhang Chuanwei, Wang Jingmei, Lin Xiaoming, et al. A moving objects detection method based on background subtraction[J]. Electronic Science and Technology, 2015, 28(10):69-71. | |
[9] | 官洪运, 苏振涛, 汪晨. 基于特征融合的背景差分改进算法[J]. 电子科技, 2020, 33(12):22-27. |
Guan Hongyun, Su Zhentao, Wang Chen. Improved bac-kground subtraction based on feature fusion[J]. Electronic Science and Technology, 2020, 33(12):22-27. | |
[10] | Chen X, Huang Q, Zhang W, et al. Ping-pong trajectory perception and prediction by a PC based high speed four-camera vision system[C]. Taipei: The Ninth World Congress on Intelligent Control and Automation, 2011:1087-1092. |
[11] |
Su H, Fang Z, Xu D, et al. Trajectory prediction of spin-ning ball based on fuzzy filtering and local modeling for robotic ping-pong player[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(11):2890-2900.
doi: 10.1109/TIM.2013.2263672 |
[12] | Huang Y, Xu D, Tan M, et al. Trajectory prediction of s-pinning ball for ping-pong player robot[C]. San Franc-isco: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011:3434-3439. |
[13] |
Zhao Y, Zhang Y, Xiong R, et al. Optimal state estimation of spinning ping-pong ball using continuous motion model[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(8):2208-2216.
doi: 10.1109/TIM.2014.2386951 |
[14] | 季云峰. 基于遗传算法的乒乓球轨迹反向推导旋转方法研究[J]. 南京体育学院学报, 2021, 20(2):53-60. |
Ji Yunfeng. Reverse calculation of rotation using trajectory of table tennis based on genetic algorithm[J]. Journal of Nanjing Sports Institute, 2021, 20(2):53-60. | |
[15] | 李伟健. 基于深度学习的乒乓球目标检测与旋转球轨迹预测[D]. 上海: 东华大学, 2021:22-48. |
Li Weijian. Table tennis target detection and rotating ball trajectory prediction based on deep learning[D]. Shanghai: Donghua University, 2021:22-48. | |
[16] |
Zhang Z, Xu D, Tan M. Visual measurement and prediction of ball trajectory for table tennis robot[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(12):3195-3205.
doi: 10.1109/TIM.2010.2047128 |
[17] | Zhang Y, Wei W, Yu D, et al. A tracking and predicting scheme for ping pong robot[J]. Journal of Zhejiang University, 2011, 12(2):110-115. |
[18] |
Mülling K, Kober J, Peters J. A biomimetic approach torobot table tennis[J]. Adaptive Behavior, 2011, 19(5):359-376.
doi: 10.1177/1059712311419378 |
[19] | 胡啸川, 李泽森, 杨双, 等. 三目组合视觉系统在乒乓球机器人上的研究与实现[J]. 机器人技术与应用, 2020, 26(5):39-43. |
Hu Xiaochuan, Li Zesen, Yang Shuang, et al. Research and implementation of trinocular combined vision system on table tennis robot[J]. Robot Technique and Application, 2020, 26(5):39-43. | |
[20] | 季云峰, 任杰, 施之皓. 乒乓球机器人视觉系统的实时跟踪[J]. 上海体育学院学报, 2020, 44(6):70-75. |
Ji Yunfeng, Ren Jie, Shi Zhihao. Real-time tracking of table tennis robot’s vision system[J]. Journal of Shanghai University of Sport, 2020, 44(6):70-75. | |
[21] | 张远辉. 基于实时视觉的乒乓球机器人标定和轨迹跟踪技术研究[D]. 杭州: 浙江大学, 2009:81-112. |
Zhang Yuanhui. Study on real-time vision based calib-ration and trajectory tracking technology of ping pong robot[D]. Hangzhou: Zhejiang University, 2009:81-112. | |
[22] | Zhang Z, Xu D, Yang P. Rebound model of table tennisball for trajectory prediction[C]. Tianjin:IEEE International Conference on Robotics and Biomimetics, 2010:376-380. |
[23] | Nakashima A, Kobayashi Y, Ogawa Y, et al. Modeling of rebound phenomenon between ball and racket rubber with spinning effect[C]. Fukuoka:ICCAS-SICE, 2009:2295-2300. |
[24] | Chen X, Tian Y, Huang Q, et al. Dynamic model based ball trajectory prediction for a robot ping-pong player[C]. Tianjin:IEEE International Conference on Roboticsand Biomimetics, 2010:603-608. |
[25] | 任艳青, 徐德, 谭民. 旋转球与乒乓球台/球拍的反弹模型[J]. 控制理论与应用, 2012, 29(11):1433-1439. |
Ren Yanqing, Xu De, Tan Min. Rebound model between spinning table tennis ball and table/racket[J]. Control Theory & Application, 2012, 29(11):1433-1439. | |
[26] | 赵永生. 旋转飞行乒乓球的状态估计和轨迹预测[D]. 杭州: 浙江大学, 2017:29-56. |
Zhao Yongsheng. State estimation and trajectory prediction of spinning-flying ping-pong ball[D]. Hangzhou: Zhejiang University, 2017:29-56. | |
[27] | 曾鉴彬. 七自由度乒乓球机器人系统的研究与设计[D]. 上海: 东华大学, 2020:15-29. |
Zeng Jianbin. Research and design of table tennis robot system with seven degrees of freedom[D]. Shanghai: Donghua University, 2020:15-29. | |
[28] | Zhao Y, Xiong R, Zhang Y. Model based motion state estimation and trajectory prediction of spinning ball for ping-pong robots using expectation-maximization algorithm[J]. Journal of Intelligent & Robotic Systems, 2017, 87(3):407-423. |
[29] | Lin H I, Huang Y C. Ball trajectory tracking and prediction for a ping-pong robot[C]. Hulun Buir: The Ninth International Conference on Information Science and Technology, 2019:222-227. |
[30] | Qiao F F. Application of deep learning in automatic detection of technical and tactical indicators of table tennis[J]. Plos One, 2021, 16(3):5259-5266. |
[31] | Gao Y P, Tebbe J, Krismer J, et al. Markerless racket pose detection and stroke classification based on stereo vision for table tennis robots[C]. Naples: The Third IEEE International Conference on Robotic Computing, 2019:189-196. |
[32] | 谈小峰. 人体检测和姿态识别在乒乓球机器人上的应用研究[D]. 上海: 东华大学, 2021:17-72. |
Tan Xiaofeng. Research on application of human body detection and pose recognition in table tennis robot system[D]. Shanghai: Donghua University, 2021:17-72. | |
[33] | Huang Y L, Schölkopf B, Peters J. Learning optimal striking points for a ping-pong playing robot[C]. Hamburg: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015:4587-4592. |
[34] | Huang Y L, Büchler D, Koc O, et al. Jointly learning trajectory generation and hitting point prediction in robot table tennis[C]. Cancun: IEEE-RAS the Sixteenth International Conference on Humanoid Robots, 2016:650-655. |
[35] | Ji Y F, Hu X Y, Chen Y T, et al. Model-based trajectoryprediction and hitting velocity control for a new table tennis robot[C]. Prague: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2021:2728-2734. |
[36] | Liu C F, Hayakawa Y, Nakashima A. Racket control for robot playing table tennis ball[C]. Jeju Island: The Twelfth In-ternational Conference on Control,Automation and Systems, 2012:1427-1432. |
[37] | Nakashima A, Nonomura J, Liu C F, et al. Hitting back- spin balls by robotic table tennis system based on physical models of ball motion[J]. IFAC Proceedings Volumes, 2012, 45(22):834-841. |
[38] | Huang Q L, Wu J, Xiong R. A solution of inverse kinematics for 7-dof manipulaators and its application[C]. Beijing: The Tenth World Congress on IEEE, 2012:3711-3717. |
[39] | 孙立书, 张翰康. 乒乓球机器人最优击球规划[J]. 江苏科技大学学报(自然科学版), 2019, 33(5):73-82 |
Sun Lishu, Zhang Hankang. Table tennis robot optimal stroke planning[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2019, 33(5):73-82 | |
[40] | Zhu Y F, Zhao Y S, Jin L S, et al. Towards high level skill learning: Learn to return table tennis ball using monte-carlo based policy gradient method[C]. Kandima: IEEE International Conference on Real-time Computing and Robotics, 2018:34-41. |
[41] | Mahjourian R, Miikkulainen R, Lazic N, et al. Hierarchical policy design for sample-efficient learning of robot table tennis through self-play[EB/OL].(2022-01-29) [2022-10-16] https://arxiv.org/abs/1811.12927. |
[42] | Tebbe J, Krauch L, Gao Y P, et al. Sample-efficient reinforcement learning in robotic table tennis[C]. Xi'an: IEEE International Conference on Robotics and Automation, 2021:4171-4178. |
[43] | 金礼森. 基于学习的乒乓球机器人回球决策[D]. 杭州: 浙江大学, 2019:15-31. |
Jin Lisen. Learning to return table tennis ball for robots[D]. Hangzhou: Zhejiang University, 2019:15-31. | |
[44] | Luo Y, Zhang H B, Zhu X Y, et al. Ball motion control in the table tennis robot system using time-series deep reinforcement learning[J]. IEEE Access, 2021(9):99816-99827. |
[1] | WANG Ziyi, CHEN Shiping. Self-Supervised Network Intrusion Detection Model Based on Graph Contrastive Learning [J]. Electronic Science and Technology, 2025, 38(3): 22-31. |
[2] | ZHAO Yunfei, XUE Cunjin. A Remote Sensing Image Water Extraction Method by Combining Atrous Convolution and Pooling Models [J]. Electronic Science and Technology, 2025, 38(3): 40-46. |
[3] | ZHENG Fangliang, WANG Yannian, LIAN Jihong, RUAN Pei. Face Image Super-Resolution Reconstruction Based on Conditional Priori Swin Transformer [J]. Electronic Science and Technology, 2025, 38(2): 35-41. |
[4] | FENG Zhen, MOU Haiming, XUE Jie, LI Qingdu. Omnidirectional Gait Generation Method for Biped Robot with Fusion of Imitation Learning [J]. Electronic Science and Technology, 2025, 38(1): 29-36. |
[5] | LAI Ying, JU Zhiyong, YE Yuxin. A Vehicle Detection Algorithm Based on Improved YOLOv4 [J]. Electronic Science and Technology, 2025, 38(1): 81-87. |
[6] | HE Zhiqiang, SUN Zhanquan. Swin-Transformer-Based Carotid Ultrasound Image Plaque Segmentation [J]. Electronic Science and Technology, 2024, 37(9): 48-56. |
[7] | HE Xing, HUANG Yongming, ZHU Yong. Pavement Pothole Detection Method Based on Improved YOLOv5 [J]. Electronic Science and Technology, 2024, 37(7): 53-59. |
[8] | YE Yuxin, JU Zhiyong, LAI Ying. Traffic Sign Detection Algorithm Incorporating Receptive Field Enhancement Module and Attention Mechanism [J]. Electronic Science and Technology, 2024, 37(6): 8-16. |
[9] | YUAN Ao, QI Jinpeng, JIA Can, XUE Yuxin, GUO Yangyang. A Classification Method of Time Series Pathological Data Segments Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(6): 84-91. |
[10] | ZHU Zihao, SONG Yan. Lightweight Capsule Network Fusing Attention and Capsule Pooling [J]. Electronic Science and Technology, 2024, 37(5): 1-8. |
[11] | XIA Rongcheng, LIU Deer. Vehicle Detection and Analysis in Urban Waterlogging Area Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(5): 18-24. |
[12] | FANG Shuai, CHEN Xu, LI Kangji. A Q-Learning Differential Evolution Algorithm for Combined Heat and Power Dynamic Economic Emission Dispatch [J]. Electronic Science and Technology, 2024, 37(5): 9-17. |
[13] | MA Wenjie, ZHANG Xuanxiong. Research on Blind Roads and Obstacle Recognition Algorithm Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(3): 75-83. |
[14] | CUI Jingnan, HUANG Chunyan, LI Yanling. Improvement of YOLOv5s Algorithm for Steel Surface Defect Detection [J]. Electronic Science and Technology, 2024, 37(12): 48-55. |
[15] | LIANG Shuifen, GUO Zhiyong. Advancements of Deep Learning in Imaging Diagnosis of Kidney Stone [J]. Electronic Science and Technology, 2024, 37(12): 67-72. |
|