[1] AKASOFU S I. The Development of the Auroral Substorm[J]. Planetary and Space Science, 1964,12(4): 273-282.
[2] SYRJASUO M T, DONOVAN E . Diurnal Auroral Occurrence Statistics Obtained via Machine Vision[J]. Annales Geophysicae, 2004, 22(4): 1103-1113.
[3] FU R, LI J, GAO X B, et al. Automatic Aurora Images Classification Algorithm Based on Separated Texture [C]// 2009 IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE, 2009: 1331-1335.
[4] WANG Y R, GAO X B, FU R, et al. Dayside Corona Aurora Classification Based on X-gray Level Aura Matrices[C]//Proceedings of the 2010 ACM International Conference on Image and Video Retrieval. New York: ACM, 2010: 282-287.
[5] HAN S M, WU Z S , WU G L, et al. Automatic Classification of Dayside Aurora in All-sky Images Using a Multi-level Texture Feature Representation[C]//Advanced Materials Research:341/342. Clausthal-Zellerfeld: Trans Tech Publications, 2012: 158-162.
[6] SYRJASUO M, PARTAMIES N. Numeric Image Features for Detection of Aurora[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 176-179.
[7] 杨曦, 李洁, 韩冰, 等. 一种分层小波模型下的极光图像分类算法[J]. 西安电子科技大学学报, 2013, 40(2): 18-24.
YANG Xi, LI Jie, HAN Bing, et al. Wavelet Hierarchical Model for Aurora Images Classification [J]. Journal of Xidian University. 2013, 40(2): 18-24.
[8] 韩冰, 仇文亮. 一种特征显著性编码的极光图像分类方法[J]. 西安电子科技大学学报, 2013, 40(6): 180-186.
HAN Bing, QIU Wenliang. Aurora Images Classification via Features Salient Coding [J]. Journal of Xidian University. 2013, 40(6): 180-186.
[9] 韩冰, 杨辰, 高新波. 融合显著信息的LDA极光图像分类[J]. 软件学报, 2013, 24(11): 2758-2766.
HAN Bing, YANG Chen, GAO Xinbo. Aurora Image Classification Based on LDA Combining with Saliency Information [J]. Journal of Software, 2013, 24(11): 2758-2766.
[10] HAN B, ZHAO X J, TAO D C, et al. Dayside Aurora Classification via BIFs-based Sparse Representation Using Manifold Learning[J]. International Journal of Computer Mathematics, 2014, 91(11): 2415-2426.
[11] KAVUKCUOGLU K, SERMANET P, BOUREAU Y L, et al. Learning Convolutional Feature Hierarchies for Visual Recognition[C] //Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Red Hook: Curran Associates Inc, 2010: 1090-1098.
[12] JOLLIFFE I T. Principal Component Analysis[M]. Hoboken: John Wiley & Sons, Ltd, 2002.
[13] CHAN T H, JIA K, GAO S, et al. PCANet: a Simple Deep Learning Baseline for Image Classification?[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5017-5032.
[14] YANG J, ZHANG D, FRANGI A F, et al. Two-dimensional PCA: a New Approach to Appearance-based Face Representation and Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137. |