[1] |
杨宏宇, 那玉琢 . 一种Android恶意软件检测模型[J]. 西安电子科技大学学报, 2019,46(3):45-51.
|
|
YANG Hongyu, NA Yuzhuo . Android Malware Detection Model[J]. Journal of Xidian University, 2019,46(3):45-51.
|
[2] |
CHANTHAKOUMMANE Y, SAIYOD S, BENJAMAS N , et al. Improving Intrusion Detection on Snort Rules for Botnets Detection[C]//Lecture Notes in Electrical Engineering: 376. Heidelberg: Springer Verlag, 2016: 765-779.
|
[3] |
YADAV S, REDDY A K K, REDDY A L N , et al. Detecting Algorithmically Generated Malicious Domain Names[C]// Proceedings of the ACM SIGCOMM Internet Measurement Conference. New York: ACM, 2010: 48-61.
|
[4] |
YADAV S, REDDY A K K, NARASIMHA REDDY A L , et al. Detecting Algorithmically Generated Domain-flux Attacks with DNS Traffic Analysis[J]. IEEE/ACM Transactions on Networking, 2012,20(5):1663-1677.
|
[5] |
SCHIAVONI S, MAGGI F, CAVALLARO L , et al. Tracking and Characterizing Botnets Using Automatically Generated Domains[J/OL]. Computer Science, 2013.[2019-8-22].
|
[6] |
SCHIAVONI S, MAGGI F, CAVALLARO L , et al. Phoenix: DGA-based Botnet Tracking and Intelligence[C]//Lecture Notes in Computer Science: 8550. Heidelberg: Springer Verlag, 2014: 192-211.
|
[7] |
BILGE L, SEN S, BALZAROTTI D , et al. EXPOSURE: A Passive DNS Analysis Service to Detect and Report Malicious Domains[J]. ACM Transactions on Information and System Security, 2014,16(4):14.
|
[8] |
RAGHURAM J, MILLER D J, KESIDIS G . Unsupervised,Low Latency Anomaly Detection of Algorithmically Generated Domain Names by Generative Probabilistic Modeling[J]. Journal of Advanced Research, 2014,5(4):423-433.
|
[9] |
YANG L H, ZHAI J T, LIU W W , et al. Detecting Word-based Algorithmically Generated Domains Using Semantic Analysis[J]. Symmetry, 2019,11(176):1-20.
|
[10] |
WOODBRIDGE J, ANDERSON H S, AHUJA A , et al. Predicting Domain Generation Algorithms with Long Short-term Memory Networks[J]. Computer Science, 2016. [2019-8-22].
|
[11] |
ANDERSON H S, WOODBRIDGE J, FILAR B . DeepDGA: Adversarially-tuned Domain Generation and Detection[C]//Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2016: 13-21.
|
[12] |
赵科军, 葛连升, 秦丰林 , 等. 基于word-hashing的DGA僵尸网络深度检测模型[J]. 东南大学学报(自然科学版), 2017,47(S1):34-37.
|
|
ZHAO Kejun, GE Liansheng, QIN Fenglin , et al. Deep Model for DGA Botnet Detection Based on Word-hashing[J]. Journal of Southeast University(Natural Science Edition), 2017,47(S1):34-37.
|
[13] |
YU B, PAN J, HU J , et al. Character Level Based Detection of DGA Domain Names[C]//Proceedings of the 2018 International Joint Conference on Neural Networks. Piscataway: IEEE, 2018: 8489147.
|
[14] |
BERMAN D S . DGA CapsNet: 1D Application of Capsule Networks to DGA Detection[J]. Information, 2019,10(5):157.
|
[15] |
TRAN D, MAC H, TONG V , et al. A LSTM Based Framework for Handling Multiclass Imbalance in DGA Botnet Detection[J]. Neurocomputing, 2018,275:2401-2413.
|
[16] |
LIN T Y, GOYAL P, GIRSHICK R , et al. Focal Loss for Dense Object Detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
|