Journal of Xidian University ›› 2020, Vol. 47 ›› Issue (2): 46-53.doi: 10.19665/j.issn1001-2400.2020.02.007
Previous Articles Next Articles
YAN Lin,LIU Kai,DUAN Meiyu
Received:
2019-09-28
Online:
2020-04-20
Published:
2020-04-26
CLC Number:
YAN Lin,LIU Kai,DUAN Meiyu. Lightweight deep neural network for point cloud classification[J].Journal of Xidian University, 2020, 47(2): 46-53.
"
名称 | 类平均精度/% | 精度/% | 数据类型 | 数据维度 | 权重数量(百万) | GFLOP |
---|---|---|---|---|---|---|
MVCNN[ | 91.4 | 90.1 | 图片 | 60×2442 | 180 | 233 |
PointNet[ | 86.2 | 89.2 | 点云 | 1024×3 | 3.5 | 14.7 |
PointNet++[ | 90.7 | 点云 | 1024×3 | 4.1 | 26.9 | |
PointWiseConv[ | 81.4 | 86.1 | 点云 | 2048×3 | 1.8 | 16.8 |
VoxNet[ | 83 | 85.9 | 体素 | 303 | 0.9 | |
ShapeNets[ | 77.3 | 84.7 | 体素 | 303 | 11 | |
文中方法 | 89.2 | 91.1 | 点云 | 1024×3 | 0.8 | 18.4 |
[1] | 张金刚, 方圆, 袁豪 , 等. 一种识别表情序列的卷积神经网络[J]. 西安电子科技大学学报, 2018,45(1):150-155. |
[2] | ZHANG Jingang, FANG Yuan, YUAN Hao , et al. Multiple Convolutional Neural Networks for Facial Expression Sequence Recognition[J]. Journal of Xidian University, 2018,45(1):150-155. |
[3] | 朱苏雅, 杜建超, 李云松 , 等. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019,46(4):35-42. |
[4] | ZHU Suya, Du Jianchao, LI Yunsong , et al. Method for Bridge Crack Detection Based on the U-Net Convolutional Networks[J]. Journal of Xidian University, 2019,46(4):35-42. |
[5] | 刘道华, 崔玉爽, 赵岩松 , 等. 一种改进卷积神经网络的教学图像检索方法[J]. 西安电子科技大学学报, 2019,46(3):52-58. |
[6] | LIU Daohua, CUI Yushuang, ZHAO Yansong , et al. Method for Retrieving the Teaching Image Based on the Improved Convolutional Neural Network s[J]. Journal of Xidian University, 2019,46(3):52-58. |
[7] | MATURANA D, SCHERER S , et al. VoxNet: A 3D Convolutional Neural Network forReal-time Object Recognition[C]// Proceedings of the 2015 IEEE International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2015: 922-928. |
[8] | WANG P S, LIU Y, GUO Y X , et al. O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis[J]. ACM Transactions on Graphics, 2017,36(4):72. |
[9] | RIEGLERG, ULUSOY A O, GEIGER A , et al. OctNet: Learning Deep 3D Representations at High Resolutions[C]// Proceedings of the 2017 30th IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6620-6629. |
[10] | SU H, MAJI S, KALOGERAKIS E , et al. Multi-view Convolutional Neural Networks for 3D Shape Recognition[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 945-953. |
[11] | QI C R, SU H, NIEBNER M , et al. Volumetric and Multi-view CNNs for Object Classification on 3D Data[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 5648-5656. |
[12] | HONG R, HU Z, WANG R , et al. Multi-view Object Retrieval via Multi-scale Topic Models[J]. IEEE Transactions on Image Processing, 2016,25(12):5814-5827. |
[13] | QI C R, SU H, MO K , et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. |
[14] | QI C R, YI L, SU H , et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]// Advances in Neural Information Processing Systems: 2017. Vancouver: Neural Information Processing Systems Foundation, 2017: 5100-5109. |
[15] | ZAHEER M, KOTTUR S, RAVANBAKHSH S , et al. Deep Sets[C]// Advances in Neural Information Processing Systems: 2017. Vancouver: Neural Information Processing Systems Foundation, 2017: 3392-3402. |
[16] | WU Z, SONG S, KHOSLA A , et al. 3D ShapeNets:a Deep Representation for Volumetric Shapes[C]// Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 1912-1920. |
[17] | HUA B S, TRANM K, YEUNG S K , et al. Pointwise Convolutional Neural Networks[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 984-993. |
[18] | LI Q D, GRIFFITHS J G , et al. Least Squares Ellipsoid Specific Fitting[C]// Proceedings-Geometric Modeling and Processing 2004. Washington: IEEE Computer Society, 2004: 335-340. |
[19] | RAVANBAKHSH S, SCHNEIDER J, POCZOS B , et al. Deep Learning with Sets and Point Clouds[C]// Workshop Track Proceedings of the 2019 5th International Conference on Learning Representations. San Diego: International Conference on Learning Representations, 2019: 149805. |
[20] | LECUN Y, BOTTOU L, BENGIO Y , et al. Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324. |
[21] | LIN M, CHEN Q, YAN S C , et al. Network in Network[C]// Conference Track Proceedings of the 2014 2nd International Conference on Learning Representations. San Diego: International Conference on Learning Representations, 2014: 149797. |
[1] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
[2] | LI Peng,FENG Cunqian,XU Xuguang,TANG Zixiang. Ballistic target fretting classification network based on Bayesian optimization [J]. Journal of Xidian University, 2021, 48(5): 139-148. |
[3] | YAN Jia,CAO Yudong,REN Jiaxing,CHEN Donghao,LI Xiaohui. Deep asymmetric compression Hashing algorithm [J]. Journal of Xidian University, 2021, 48(5): 212-221. |
[4] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[5] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[6] | QI Yanjun,KONG Yueping,WANG Jiajing,ZHU Xudong. Gait recognition method combining LSTM and CNN [J]. Journal of Xidian University, 2021, 48(5): 78-85. |
[7] | SONG Jianfeng,MIAO Qiguang,WANG Chongxiao,XU Hao,YANG Jin. Multi-scale single object tracking based on the attention mechanism [J]. Journal of Xidian University, 2021, 48(5): 110-116. |
[8] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[9] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[10] | SUN Haojie,LI Miaoyu,ZHANG Panpan,XU Pengfei. Self-supervised facial asymmetry learning for automatic evaluation of facial paralysis [J]. Journal of Xidian University, 2021, 48(3): 115-122. |
[11] | ZENG Yong,WU Zhengyuan,DONG Lihua,LIU Zhihong,MA Jianfeng,LI Zan. Research on malicious traffic identification technology in encrypted traffic [J]. Journal of Xidian University, 2021, 48(3): 170-187. |
[12] | WANG Junxiang,HUANG Lin,ZHANG Ying,NI Jiangqun,LIN Lang. Algorithm for the detection of a low complexity contrast enhanced image source [J]. Journal of Xidian University, 2021, 48(1): 96-106. |
[13] | ZHANG Hua,GAO Haoran,YANG Xingguo,LI Wenmin,GAO Fei,WEN Qiaoyan. TargetedFool:an algorithm for achieving targeted attacks [J]. Journal of Xidian University, 2021, 48(1): 149-159. |
[14] | ZHANG Shudong,GAO Haichang,CAO Xiwen,KANG Shuai. Adaptive fast and targeted adversarial attack for speech recognition [J]. Journal of Xidian University, 2021, 48(1): 168-175. |
[15] | YANG Hongyu,ZENG Renyun. Method for assessment of network security situation with deep learning [J]. Journal of Xidian University, 2021, 48(1): 183-190. |
|