Journal of Xidian University ›› 2020, Vol. 47 ›› Issue (3): 58-65.doi: 10.19665/j.issn1001-2400.2020.03.008
Previous Articles Next Articles
NGUYEN Van-Truong,CAI Jueping,WEI Linyu,CHU Jie
Received:
2019-11-08
Online:
2020-06-20
Published:
2020-06-19
CLC Number:
NGUYEN Van-Truong,CAI Jueping,WEI Linyu,CHU Jie. Low complexity probability-based piecewise linear approximation of the sigmoid function[J].Journal of Xidian University, 2020, 47(3): 58-65.
"
区Ⅰ的概率在从0% 到30%之间 | 区Ⅰ的概率在从30% 到 70%之间 | 区Ⅰ的概率在从70%到 100%之间 | ||||||
---|---|---|---|---|---|---|---|---|
区间 | n | bi | 区间 | n | bi | 区间 | n | bi |
[0, 1.1) | 2 | 0.4877 | [0, 1) | 2 | 0.4906 | [0, 0.9) | 2 | 0.4931 |
[1.1, 2.2) | 3 | 0.6231 | [1, 1.5) | 3 | 0.6182 | [0.9, 1.3) | 3 | 0.6110 |
[2.2, 2.6) | 4 | 0.7657 | [1.5, 2.2) | 3 | 0.6293 | [1.3, 1.7) | 3 | 0.6283 |
[2.6, 3.2) | 4 | 0.7647 | [2.2, 2.6) | 4 | 0.7657 | [1.7, 2.2) | 3 | 0.6293 |
[3.2, 4.1) | 5 | 0.8586 | [2.6, 3.2) | 4 | 0.7647 | [2.2, 3.6) | 4 | 0.7583 |
[4.1, 5) | 7 | 0.9531 | [3.2, 5) | 6 | 0.9153 | [3.6, 5) | 6 | 0.9175 |
"
拟合方法 | 区间 | 总段数 | 绝对误差 | |
---|---|---|---|---|
最大绝对误差 | 平均绝对误差 | |||
Armato [8] | [-8, 8] | 16 | 0.00788 | 0.00107 |
Ngah [12] | [-4, 4] | 0.02200 | 0.00770 | |
Gomar [11] | [-4, 4] | 0.00870 | 0.00580 | |
Mitra [13] | [-9.35, 9.35] | 14 | 0.01270 | 0.00150 |
Zamanlooy[14] | [-8, 8] | 6 | 0.01890 | 0.00590 |
Campo[4] | [-4.59, 4.59] | 12 | 0.02800 | 0.00430 |
Savich [10] | [-8, 8] | 5 | 0.06790 | 0.02630 |
提出的方法 | [-5, 5] | 12 | 0.01250 | 0.00420 |
"
拟合方法 | 区间 | 总段数 | 准确率/% | |
---|---|---|---|---|
DNN | CNN | |||
Sigmoid | 97.37 | 98.96 | ||
Armato [8] | [-8, 8] | 16 | 97.38 | 98.26 |
Ngah [12] | [-4, 4] | 97.37 | 98.35 | |
Gomar [11] | [-4, 4] | 97.30 | 98.24 | |
Mitra [13] | [-9.35, 9.35] | 14 | 97.35 | 98.29 |
Zamanlooy[14] | [-8, 8] | 06 | 97.36 | 98.21 |
Campo [4] | [-4.59, 4.59] | 12 | 97.34 | 98.27 |
Savich [10] | [-8, 8] | 05 | 96.61 | 97.85 |
平均分段 | [-5, 5] | 12 | 97.38 | 98.34 |
提出的方法 | [-5, 5] | 12 | 97.45 | 98.42 |
[1] |
KANG M, LIM S, GONUGONDLA S, et al. An In-memory VLSI Architecture for Convolutional Neural Networks[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018,8(3):494-505.
doi: 10.1109/JETCAS.2018.2829522 |
[2] |
LIU Q, LIU J, SANG R., et al. Fast Neural Network Training on FPGA Using Quasi-Newton Optimization Method[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018,26(8):1575-1579.
doi: 10.1109/TVLSI.2018.2820016 |
[3] | HAJDUK Z. Hardware Implementation of Hyperbolic Tangent and Sigmoid Activation Function[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2018,66(5):563-577. |
[4] |
DEL CAMPO I, FINKER R, ECHANOBE J, et al. Controlled Accuracy Approximation of Sigmoid Function for Efficient FPGA-based Implementation of Artificial Neurons[J]. Electronics Letters, 2013,49(25):1598-1600.
doi: 10.1049/el.2013.3230 |
[5] | NAMIN A H, LEBOEUF K, MUSCEDERE R, et al. Efficient Hardware Implementation of the Hyperbolic Tangent Sigmoid Function [C]//Proceedings of the IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2009: 2117-2120. |
[6] |
TIWARI V, KHARE N. Hardware Implementation of Neural Network with Sigmoidal Activation Functions Using CORDIC[J]. Microprocessors and Microsystems, 2015,39(6):373-381.
doi: 10.1016/j.micpro.2015.05.012 |
[7] |
NASCIMENTO I, JARDIM R, MORGADO D F. A New Solution to the Hyperbolic Tangent Implementation in Hardware: Polynomial Modeling of the Fractional Exponential Part[J]. Neural Computing and Applications, 2013,23(2):363-369.
doi: 10.1007/s00521-012-0919-0 |
[8] |
ARMATO A, FANUCCI L, SCILINGO E P, et al. Low-error Digital Hardware Implementation of Artificial Neuron Activation Functions and Their Derivative[J]. Microprocessors and Microsystems, 2011,35(6):557-567.
doi: 10.1016/j.micpro.2011.05.007 |
[9] |
BAJGER M, OMONDI A. Low-error, High-speed Approximation of the Sigmoid Function for Large FPGA Implementations[J]. Journal of Signal Processing Systems, 2008,52(2):137-151.
doi: 10.1007/s11265-007-0140-z |
[10] |
SAVICH A W, MOUSSA M, AREIBI S. The Impact of Arithmetic Representation on Implementing MLP-BP on FPGAs: a Study[J]. IEEE Transactions on Neural Networks, 2007,18(1):240-252.
doi: 10.1109/TNN.2006.883002 |
[11] | GOMAR S, MIRHASSANI M, AHMADI M. Precise Digital Implementations of Hyperbolic Tanh and Sigmoid Function [C]//Proceedings of the Asilomar Conference on Signals, Systems and Computers. Washington: IEEE Computer Society, 2016: 1586-1589. |
[12] | NGAH S, BAKAR R A. Sigmoid Function Implementation Using the Unequal Segmentation of Differential Lookup Table and Second Order Nonlinear Function[J]. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 2017,9(2):103-108. |
[13] | MITRA S, CHATTOPADHYAY P. Challenges in Implementation of ANN in Embedded System [C]//Proceedings of the International Conference on Electrical, Electronics, and Optimization Techniques. Piscataway: IEEE, 2016: 1794-1798. |
[14] |
ZAMANLOOY B, MIRHASSANI M. An Analog CVNS-based Sigmoid Neuron for Precise Neurochips[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017,25(3):894-906.
doi: 10.1109/TVLSI.2016.2615306 |
[15] | DATTA D, AGARWAL S, KUMAR V, et al. Design of Current Mode Sigmoid Function and Hyperbolic Tangent Function [C]//Proceedings of the Communications in Computer and Information Science. Heidelberg: Springer, 2019: 47-60. |
[16] | LECUN Y. MNIST Handwritten Digit Database[DB/OL]. [ 2019-10-12]. http://yann. lecun. com/exdb/mnist/. |
[1] | LV Wenkai,YANG Pengfei,DING Yunqing,ZHANG Heyu,ZHENG Tianyang. JEDERL:A task scheduling optimization algorithm for heterogeneous computing platforms [J]. Journal of Xidian University, 2021, 48(6): 67-74. |
[2] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[3] | SONG Jianqiao,WANG Feng,NIU Jin,SHI Zezhou,MA Junhui. Potential emotion recognition based on the fusion of the spatio-temporal neural network and facial pulse signals [J]. Journal of Xidian University, 2021, 48(4): 159-167. |
[4] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[5] | CAO Yi,CAI Xiaodong. Effective learning strategy for hard samples [J]. Journal of Xidian University, 2021, 48(3): 99-105. |
[6] | SONG Chuanwang,LIU Dong,LI Enyu,ZHAO Ruishou,HAO Siyuan,SHEN Tianqi. Reactive relay selection strategy for NOMA systems [J]. Journal of Xidian University, 2021, 48(3): 56-62. |
[7] | HE Shiyang,LI Hui,LI Fenghua. Optimization and implementation of the SM4 on FPGA [J]. Journal of Xidian University, 2021, 48(3): 155-162. |
[8] | XIAO Yeqiu,ZHU Xinghui,ZHAO Shuangrui,REN Baoquan,SHEN Yulong. Analysis of physical layer security performance for satellite communication systems [J]. Journal of Xidian University, 2021, 48(3): 163-169. |
[9] | WANG Ping,JIANG Yuze,ZHAO Guanghui. Object detection based on the multiscale location Enhancement network [J]. Journal of Xidian University, 2021, 48(3): 85-90. |
[10] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[11] | LI Shan,ZHNAG Kun,SHUI Penglang. Ship length distribution modeling on China offshore and ability evaluation of radar ship classification [J]. Journal of Xidian University, 2021, 48(2): 84-91. |
[12] | ZHANG Shudong,GAO Haichang,CAO Xiwen,KANG Shuai. Adaptive fast and targeted adversarial attack for speech recognition [J]. Journal of Xidian University, 2021, 48(1): 168-175. |
[13] | DANG Jisheng,YANG Jun. 3D model recognition and segmentation based on multi-feature fusion [J]. Journal of Xidian University, 2020, 47(4): 149-157. |
[14] | QU Bayi,LIU Yehao,ZHANG Taojing,LIU Wei,YU Dongsong,ZHOU Wei. Scheme for miniature time difference measurement with a high resolution and a large range [J]. Journal of Xidian University, 2020, 47(4): 24-30. |
[15] | LI Kunlun,ZHANG Lu,XU Hongke,SONG Huansheng. Waveletdomain dilated network for fast low-dose CT image reconstruction [J]. Journal of Xidian University, 2020, 47(4): 86-93. |
|