[1] |
SAURA J R, BENNETT D R. A Three-Stage Method for Data Text Mining:Using UGC in Business Intelligence Analysis[J]. Symmetry, 2019, 11(4):519.
doi: 10.3390/sym11040519
|
[2] |
LIU M, NIE L, WANG M, et al. Towards Micro-Video Understanding by Joint Sequential-Sparse Modeling[C]// Proceedings of ACM International Conference on Multimedia. New York: ACM, 2017:970-978.
|
[3] |
JING P, SU Y, NIE L, et al. Low-Rank Multi-View Embedding Learning for Micro-Video Popularity Prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 30(8):1519-1532.
doi: 10.1109/TKDE.2017.2785784
|
[4] |
CHEN X, LIU D, XIONG Z, et al. Learning and Fusing Multiple User Interest Representations for Micro-Video and Movie Recommendations[J]. IEEE Transactions on Multimedia, 2020, 23:484-496.
doi: 10.1109/TMM.2020.2978618
|
[5] |
JIA X, ZHENG X, LI W, et al. Facial Emotion Distribution Learning by Exploiting Low-Rank Label Correlations Locally[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:9841-9850.
|
[6] |
CHEN X, SONG X, REN R, et al. Fine-Grained Privacy Detection with Graph-Regularized Hierarchical Attentive Representation Learning[J]. ACM Transactions on Information Systems, 2020, 38(4):1-26.
|
[7] |
D'MELLO S K, KORY J. A Review and Meta-Analysis of Multimodal Affect Detection Systems[J]. ACM Computing Surveys, 2015, 47(3):1-36.
|
[8] |
HARDOON D R, SZEDMAK S, SHAWE-TAYLOR J. Canonical Correlation Analysis:An Overview with Application to Learning Methods[J]. Neural Computation, 2004, 16(12):2639-2664.
doi: 10.1162/0899766042321814
|
[9] |
党吉圣, 杨军. 多特征融合的三维模型识别与分割[J]. 西安电子科技大学学报, 2020, 47(4):149-157.
|
|
DANG Jisheng, YANG Jun. 3D Model Recognition and Segmentation Based on Multi-Feature Fusion[J]. Journal of Xidian University, 2020, 47(4):149-157.
|
[10] |
ZHANG C, FU H, ZHOU J T, et al. CPM-Nets:Cross Partial Multi-View Networks[C]// 33rd Conference on Neural Information Processing Systems. San Diego: NeurIPS, 2019:557-567.
|
[11] |
张丽娟, 崔天舒, 井佩光, 等. 基于深度多模态特征融合的短视频分类[J]. 北京航空航天大学学报, 2021, 47(3):478-485.
|
|
ZHANG Lijuan, CUI Tianshu, JING Peiguang, et al. Micro-Video Classification Based on Deep Multi-Modal Feature Fusion[J]. Journal of Beihang University, 2021, 47(3):478-485.
|
[12] |
张志昌, 张治满, 张珍文. 融合局部语义和全局结构信息的健康问句分类[J]. 西安电子科技大学学报, 2020, 47(2):9-15.
|
|
ZHANG Zhichang, ZHANG Zhiman, ZHANG Zhenwen. Classifying Health Questions with Local Semantic and Global Structural Information[J]. Journal of Xidian University, 2020, 47(2):9-15.
|
[13] |
KIPFT N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks (2016)[J/OL]. [2020-07-23]. http://arxiv.org/abs/1609.02907.
|
[14] |
HECHT-NIELSEN R. Theory of The Backpropagation Neural Network[J]. Neural Networks, 1988, 1:445.
doi: 10.1016/0893-6080(88)90469-8
|
[15] |
BOTTOU L. Large-Scale Machine Learning with Stochastic Gradient Descent[C]// Proceedings of International Conference on Computational Statistics.Heidelberg:Springer, 2010:177-186.
|
[16] |
YANNAI K, KAWANO Y. Food Image Recognition Using Deep Convolutional Network with Pre-Training and Fine-Tuning[C]// Proceedings of IEEE International Conference on Multimedia.Piscataway:IEEE, 2015:1-6.
|
[17] |
LOGAN B. Mel Frequency Cepstral Coefficients for Music Modeling[C]// Proceedings of International Society for Music Information Retrieval.Massachusetts:ISMIR, 2000, 270:1-11.
|
[18] |
WANG L, QIAN Y, TANG X. Action Recognition with Trajectory-Pooled Deep-Convolutional Descriptors[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2015:4305-4314.
|
[19] |
PENNINGTON J, SOCHER R, MANNING C D. Glove:Global Vectors for Word Representation[C]// Proceedings of Conference on Empirical Methods in Natural Language Processing.Stroudsburg:ACL, 2014:1532-1543.
|
[20] |
TRAN D, BOURDEV L, FERGUS R, et al. Learning Spatiotemporal Features with 3D Convolutional Networks[C]// Proceedings of IEEE International Conference on Computer Vision.Piscataway:IEEE, 2015:4489-4497.
|
[21] |
YEH C K, WU W C, KO W J, et al. Learning Deep Latent Spaces for Multi-Label Classification[C]// Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017:2838-2844.
|
[22] |
ZHAN M L, ZHOU Z H. ML-KNN:A Lazy Learning Approach to Multi-Label Learning[J]. Pattern Recognition, 2007, 40(7):2038-2048.
doi: 10.1016/j.patcog.2006.12.019
|
[23] |
SZEGRDY C, LIU W, JIA Y, et al. Going Deeper with Convolutions[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2015:1-9.
|
[24] |
ZHU Y, KWORK J T, ZHOU Z H. Multi-Label Learning with Global and Local Label Correlation[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 30(6):1081-1094.
doi: 10.1109/TKDE.2017.2785795
|
[25] |
DING Z, FU Y. Robust Multi-View Subspace Learning through Dual Low-Rank Decompositions[C]// Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2016:1181-1187.
|
[26] |
ZHANG J, LUO Z, LI C, et al. Manifold Regularized Discriminative Feature Selection for Multi-Label Learning[J]. Pattern Recognition, 2019, 95:136-150.
doi: 10.1016/j.patcog.2019.06.003
|
[27] |
WANG L, LIU Y, QIN C, et al. Dual Relation Semi-Supervised Multi-Label Learning[C]// Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020:6227-6234.
|