Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (1): 147-156.doi: 10.19665/j.issn1001-2400.20230405
• Computer Science and Technology • Previous Articles Next Articles
ZHANG Xinyu(), LIANG Yu(), ZHANG Wei()
Received:
2023-01-13
Online:
2024-01-20
Published:
2023-09-06
Contact:
ZHANG Wei
E-mail:xinyuz@tju.edu.cn;liangyu@tju.edu.cn;tjuzhangwei@tju.edu.cn
CLC Number:
ZHANG Xinyu, LIANG Yu, ZHANG Wei. Real-time smoke segmentation algorithm combining global and local information[J].Journal of Xidian University, 2024, 51(1): 147-156.
"
视频名称 | 文中算法 | 文献[28] | 文献[27] | 文献[26] | ||||
---|---|---|---|---|---|---|---|---|
RTPR | RTNR | RTPR | RTNR | RTPR | RTNR | RTPR | RTNR | |
sBehindtheFence | 98.73 | 97.80 | 98.64 | 100.00 | 97.20 | 96.27 | 94.72 | 100.00 |
sBtFence | 99.16 | 100.00 | 98.81 | 100.00 | 98.17 | 100.00 | 99.08 | 100.00 |
sMoky | 98.44 | 100.00 | 98.27 | 100.00 | 99.68 | 100.00 | 86.23 | 100.00 |
sWasteBasket | 99.52 | 97.15 | 99.50 | 96.84 | 97.18 | 98.36 | 99.89 | 92.60 |
sWindow | 98.28 | 100.00 | 98.46 | 97.87 | 98.10 | 100.00 | 94.30 | 100.00 |
平均值 | 98.83 | 98.99 | 98.74 | 98.94 | 98.07 | 98.93 | 94.84 | 98.52 |
[1] | 秦瑞, 张为. 一种无锚框结构的多尺度火灾检测算法[J]. 西安电子科技大学学报, 2022, 49(6):111-119. |
QIN Rui, ZHANG Wei. Multi-Scale Fire Detection Algorithm with an Anchor Free Structure[J]. Journal of Xidian University, 2022, 49(6):111-119. | |
[2] | 宁阳, 杜建超, 韩硕, 等. 改进DeeplabV3+的火焰分割与火情分析方法[J]. 西安电子科技大学学报, 2021, 48(5):38-46. |
NING Yang, DU Jianchao, HAN Shuo, et al. Fire Segmentation Based on the Improved DeeplabV3+ and the Analytical Method for Fire Development[J]. Journal of Xidian University, 2021, 48(5):38-46. | |
[3] |
DENG X, YU Z, WANG L, et al. Smoke Image Segmentation Based on Color Model[J]. Journal on Innovation and Sustainability RISUS, 2015, 6(2):130-138.
doi: 10.24212/2179-3565.2015v6i2p130-138 |
[4] |
MA Z, CAO Y, SONG L, et al. A New Smoke Segmentation Method Based on Improved Adaptive Density Peak Clustering[J]. Applied Sciences, 2023, 13(3):1281.
doi: 10.3390/app13031281 |
[5] |
WANG Z, YANG P, LIANG H, et al. Semantic Segmentation and Analysis on Sensitive Parameters of Forest Fire Smoke Using Smoke-Unet and Landsat-8 Imagery[J]. Remote Sensing, 2022, 14(1):45.
doi: 10.3390/rs14010045 |
[6] | RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Heidelberg: Springer, 2015:234-241. |
[7] |
YUAN F, SHI Y, ZHANG L, et al. A Cross-Scale Mixed Attention Network for Smoke Segmentation[J]. Digital Signal Processing, 2023, 134:103924.
doi: 10.1016/j.dsp.2023.103924 |
[8] | ZHENG S, LU J, ZHAO H, et al. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021:6881-6890. |
[9] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image Is Worth 16x16 Words:Transformers for Image Recognition at Scale[J]. International Conference on Learning Representations, 2021. |
[10] | CHEN J, LU Y, YU Q, et al. TransUnet:Transformers Make Strong Encoders for Medical Image Segmentation(2021)[J/OL].[2021-02-08].https://arxiv.org/abs/2102.04306v1. |
[11] |
ZHENG Y, WANG Z, XU B, et al. Multi-Scale Semantic Segmentation for Fire Smoke Image Based on Global Information and U-Net[J]. Electronics, 2022, 11(17):2718.
doi: 10.3390/electronics11172718 |
[12] | LIU Z, LIN Y, CAO Y, et al. Swin Transformer:Hierarchical Vision Transformer Using Shifted Windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021:10012-10022. |
[13] | XIE E, WANG W, YU Z, et al. SegFormer:Simple and Efficient Design for Semantic Segmentation with Transformers[J]. Advances in Neural Information Processing Systems, 2021, 34:12077-12090. |
[14] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[C]// Advances in Neural Information Processing Systems 30(NIPS 2017). San Diego: NIPS, 2017:1-11. |
[15] | ISLAM M A, JIA S, BRUCE N D B. How Much Position Information Do Convolutional Neural Networks Encoder(2020)[J/OL].[2020-01-22].https://arxiv.org/abs/2001.08248. |
[16] | SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2:Inverted Residuals and Linear Bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:4510-4520. |
[17] | LIU Z, MAO H, WU C Y, et al. A Convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022:11976-11986. |
[18] | YU C, WANG J, PENG C, et al. Bisenet:Bilateral Segmentation Network for Real-Time Semantic Segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV). Heidelberg: Springer, 2018:325-341. |
[19] | HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:7132-7141. |
[20] | GUO M H, LU C Z, HOU Q, et al. SegneXt:Rethinking Convolutional Attention Design for Semantic Segmentation[J]. Advances in Neural Information Processing Systems, 2022, 35:1140-1156. |
[21] | GENG Z, GUO M H, CHEN H, et al. Is Attention Better Than Matrix Decomposition?(2021)[J/OL].[2021-09-09].https://arxiv.org/abs/2109.04553. |
[22] | ZHAO H, SHI J, QI X, et al. Pyramid Scene Parsing Network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:2881-2890. |
[23] | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV). Heidelberg: Springer, 2018:801-818. |
[24] | YUAN Y, CHEN X, CHEN X, et al. Object-Contextual Representations for Semantic Segmentation[C]// Proceedings of the European Conference on Computer Vision(ECCV). Heidelberg: Springer, 2020:173-190. |
[25] | XIAO T, LIU Y, ZHOU B, et al. Unified Perceptual Parsing for Scene Understanding[C]//Proceedings of the European Conference on Computer Vision(ECCV). Heidelberg: Springer, 2018:418-434. |
[26] | BESBES O, BENAZZA-BENYAHIA A. A Novel Video-Based Smoke Detection Method Based on Color Invariants[C]//2016 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP). Piscataway: IEEE, 2016:1911-1915. |
[27] | 赵敏, 张为, 王鑫, 等. 时空背景模型下结合多种纹理特征的烟雾检测[J]. 西安交通大学学报, 2018, 52(8):67-73. |
ZHAO Min, ZHANG Wei, WANG Xin, et al. A Smoke Detection Algorithm with Multi-Texture Feature Exploration Under a Spatio-Temporal Background Model[J]. Journal of Xi’an Jiaotong University, 2018, 52(8):67-73. | |
[28] | 王浩远, 梁煜, 张为. 融合多分辨率表征的实时烟雾分割算法[J]. 浙江大学学报(工学版), 2021, 55(12):2334-2341. |
WHANG Haoyuan, LIANG Yu, ZHANG Wei. Real-Time Smoke Segmentation Algorithm Fused with Multi-Resolution Representation[J]. Journal of ZheJiang University(Engineering Science), 2021, 55(12):2334-2341. |
[1] | HUANG Heyuan, MU Caihong, FANG Yunfei, LIU Yi. Graph convolution neural network for recommendation using graph negative sampling [J]. Journal of Xidian University, 2024, 51(1): 86-99. |
[2] | ZHONG Hao, BIAN Shan, WANG Chuntao. Real world image tampering localization combining the self-attention mechanism and convolutional neural networks [J]. Journal of Xidian University, 2024, 51(1): 135-146. |
[3] | DU Mingyang, DU Meng, PAN Jifei, BI Daping. Generative adversarial model for radar intra-pulse signal denoising and recognition [J]. Journal of Xidian University, 2023, 50(6): 133-147. |
[4] | WANG Kan, WANG Mengyang, LIU Xin, TIAN Guoqiang, LI Chuan, LIU Wei. Event detection by combining self-attention and CNN-BiGRU [J]. Journal of Xidian University, 2022, 49(5): 181-188. |
[5] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[6] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[7] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[8] | LI Kunlun,ZHANG Lu,XU Hongke,SONG Huansheng. Waveletdomain dilated network for fast low-dose CT image reconstruction [J]. Journal of Xidian University, 2020, 47(4): 86-93. |
[9] | DANG Jisheng,YANG Jun. 3D model recognition and segmentation based on multi-feature fusion [J]. Journal of Xidian University, 2020, 47(4): 149-157. |
[10] | WANG Jijun,HAO Ziyu,LI Hongliang. Optimization of memory access for the convolutional neural network training [J]. Journal of Xidian University, 2020, 47(2): 98-107. |
[11] | ZHU Suya,DU Jianchao,LI Yunsong,WANG Xiaopeng. Method for bridge crack detection based on the U-Net convolutional networks [J]. Journal of Xidian University, 2019, 46(4): 35-42. |
[12] | JIANG Xingguo,WAN Jinzhao,CAI Xiaodong,LI Haiou,CAO Yi. Algorithm for identification of fine-grained vehicles based on singular value decomposition and central metric [J]. Journal of Xidian University, 2019, 46(3): 82-88. |
[13] | LIANG Xiaoxi, CAI Xiaodong, WANG Meng, KU Haohua. Face recognition method for integrating the nested residual CNN and angular metric [J]. Journal of Xidian University, 2018, 45(6): 144-149. |
[14] | ZHAO Boran;ZHANG Li;SHI Guangming;HUANG Rong;XU Xinran. Design of the programmable neural network processor based on the transport triggered architecture [J]. Journal of Xidian University, 2018, 45(4): 92-98. |
[15] | XIN Peng;XU Yuelei;MA Shiping;LI Shuai;LV Chao. Airport detection combining region proposal networks and adaptive pooling networks [J]. Journal of Xidian University, 2018, 45(3): 102-108. |
|