Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (1): 135-146.doi: 10.19665/j.issn1001-2400.20230213
• Computer Science and Technology • Previous Articles Next Articles
ZHONG Hao1,2(), BIAN Shan1,2,3(), WANG Chuntao1,2()
Received:
2022-12-07
Online:
2023-09-06
Published:
2023-09-06
Contact:
BIAN Shan
E-mail:zhneo@outlook.com;bianshan@scau.edu.cn;wangct@scau.edu.cn
CLC Number:
ZHONG Hao, BIAN Shan, WANG Chuntao. Real world image tampering localization combining the self-attention mechanism and convolutional neural networks[J].Journal of Xidian University, 2024, 51(1): 135-146.
"
消融设置 | 结构 | 网络 | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
自注意力模块 | 全自注意力模块 | √ | √ | √ | √ | √ | |
原生自注意力模块 | √ | ||||||
自注意力模块连接方式 | 逆向连接 | √ | √ | √ | √ | ||
正向连接 | √ | ||||||
无连接 | √ | ||||||
解码模块 | 阶段融合模块 | √ | √ | √ | √ | √ | |
特征金字塔 | √ | ||||||
损失函数 | Log正则化 | √ | √ | √ | √ | √ | |
无Log正则化 | √ | ||||||
评价指标/% | F1 | 63.06 | 62.08 | 62.40 | 62.21 | 59.68 | 61.36 |
IoU | 51.49 | 50.38 | 50.48 | 50.36 | 48.04 | 49.66 | |
MCC | 62.48 | 61.51 | 61.85 | 61.52 | 59.17 | 60.86 | |
AUC | 90.21 | 88.05 | 89.60 | 89.93 | 87.87 | 88.73 |
[1] | DONG J, WANG W, TAN T. CASIA Image Tampering Detection Evaluation Database[C]//Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing. Piscataway: IEEE, 2013:422-426. |
[2] | GUAN H, KOZAK M, ROBERTSON E, et al. MFC Datasets:Large-Scale Benchmark Datasets for Media Forensic Challenge Evaluation[C]//Proceedings of the 2019 IEEE Winter Applications of Computer Vision Workshops. Piscataway: IEEE, 2019:63-72. |
[3] | HSU Y, CHANG S. Detecting Image Splicing Using Geometry Invariants and Camera Characteristics Consistency[C]//Proceedings of the 2006 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2006:549-552. |
[4] | WEN B, ZHU Y, SUBRAMANIAN R, et al. COVERAGE-A Novel Data base for Copy-Move Forgery Detection[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016:161-165. |
[5] | FRIDRICH J, SOUKAL D, LUKÁŠ J. Detection of Copy-Move Forgery in Digital Images[C]//Proceedings of the Digital Forensic Research Workshop. Cleveland: Digital Forensic Research, 2003:1-10. |
[6] | POPESCU A C, FARID H. Exposing Digital Forgeries by Detecting Duplicated Image Regions[R]. USA: Dartmouth College, 2004. |
[7] |
ZIMBA M, SUN X M. DWT-PCA(EVD) Based Copy-Move Image Forgery Detection[J]. International Journal of Digital Content Technology and its Applications, 2011, 5(1):251-258.
doi: 10.4156/jdcta |
[8] | HUANG H, GUO W, ZHANG Y. Detection of Copy-Move Forgery in Digital Images Using SIFT Algorithm[C]//Proceedings of the 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application. Piscataway: IEEE, 2008:272-276. |
[9] |
PAN X, LYU S. Region Duplication Detection Using Image Feature Matching[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(4):857-867.
doi: 10.1109/TIFS.2010.2078506 |
[10] |
FERRARA P, BIANCHI T, DE ROSA A, et al. Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5):1566-1577.
doi: 10.1109/TIFS.2012.2202227 |
[11] |
FARID H. Exposing Digital Forgeries from JPEG Ghosts[J]. IEEE Transactions on Information Forensics and Security, 2009, 4(1):154-160.
doi: 10.1109/TIFS.2008.2012215 |
[12] |
LI H, LUO W, HUANG J. Localization of Diffusion-Based Inpainting in Digital Images[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(12):3050-3064.
doi: 10.1109/TIFS.2017.2730822 |
[13] | RAO Y, NI J. A Deep Learning Approach to Detection of Splicing and Copy-Move Forgeries in Images [C]//Proceedings of the 2016 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2016:1-6. |
[14] | LI H, HUANG J. Localization of Deep Inpainting Using High-Pass Fully Convolutional Network[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019:8300-8309. |
[15] |
BAYAR B, STAMM M C. Constrained Convolutional Neural Networks:A New Approach Towards General Purpose Image Manipulation Detection[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11):2691-2706.
doi: 10.1109/TIFS.2018.2825953 |
[16] |
SALLOUM R, REN Y, KUO C C J. Image Splicing Localization Using A Multi-Task Fully Convolutional Network(MFCN)[J]. Journal of Visual Communication and Image Representation, 2018, 51:201-209.
doi: 10.1016/j.jvcir.2018.01.010 |
[17] | ZHOU P, HAN X, MORARIU V I, et al. Learning Rich Features for Image Manipulation Detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:1053-1061. |
[18] |
XU W, LUO J, ZHU C, et al. Document Images Forgery Localization Using a Two-Stream Network[J]. International Journal of Intelligent Systems, 2022, 37:5272-5289.
doi: 10.1002/int.v37.8 |
[19] | WU Y, ABDALMAGEED W, NATARAJAN P. ManTra-Net:Manipulation Tracing Network for Detection and Localization of Image Forgeries with Anomalous Features[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:9535-9544. |
[20] | DONG C, CHEN X, HU R, et al. MVSS-Net:Multi-View Multi-Scale Supervised Networks for Image Manipulation Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3):3539-3553. |
[21] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:770-778. |
[22] | BI X, WEI Y, XIAO B, et al. RRU-Net:The Ringed Residual U-Net for Image Splicing Forgery Detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019:30-39. |
[23] | HAO J, ZHANG Z, YANG S, et al. TransForensics:Image Forgery Localization with Dense Self-Attention[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021:15035-15044. |
[24] |
ZHUANG P, LI H, TAN S, et al. Image Tampering Localization Using A Dense Fully Convolutional Network[J]. IEEE Transactions on Information Forensics and Security, 2021, 16:2986-2999.
doi: 10.1109/TIFS.2021.3070444 |
[25] | HU X, ZHANG Z, JIANG Z, et al. SPAN:Spatial Pyramid Attention Network for Image Manipulation Localization[C]//Proceedings of the European Conference on Computer Vision. Piscataway: IEEE, 2020:312-328. |
[26] |
WU H, ZHOU J, TIAN J, et al. Robust Image Forgery Detection against Transmission over Online Social Networks[J]. IEEE Transactions on Information Forensics and Security, 2022, 17:443-456.
doi: 10.1109/TIFS.2022.3144878 |
[27] | LIU Z, MAO H, WU C Y, et al. A Convnet for the 2020s[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022:11976-11986. |
[28] | KWON M J, YU I J, NAM S H, et al. CAT-Net:Compression Artifact Tracing Network for Detection and Localization of Image Splicing[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021:375-384. |
[29] |
BOROUMAND M, CHEN M, FRIDRICH J. Deep Residual Network for Steganalysis of Digital Images[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5):1181-1193.
doi: 10.1109/TIFS.2018.2871749 |
[30] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale(2020)[C/OL].[2020-10-22].https://arxiv.org/abs/2010.11929. |
[31] | WANG W, XIE E, LI X, et al. Pyramid Vision Transformer:A Versatile Backbone for Dense Prediction without Convolutions[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021:548-558. |
[32] | HOWARD A G, ZHU M, CHEN B, et al. MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications(2017)[J/OL].[2017-04-17].https://arxiv.org/abs/1704.04861. |
[33] | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Information Forensics and Security, 2020, 42(8):2011-2023. |
[34] | 刘迪, 郭继昌, 汪昱东, 等. 融合注意力机制的多尺度显著性目标检测网络[J]. 西安电子科技大学学报, 2022, 49(4):118-126. |
LIU Di, GUO Jichang, WANG Yudong, et al. Multi-Scale Salient Object Detection Network Combining an Attention Mechanism[J]. Journal of Xidian University, 2022, 49(4):118-126. | |
[35] | XIE E, WANG W, YU Z, et al. SegFormer:Simple and Efficient Design for Semantic Segmentation with Transformers[J]. Advances in Neural Information Processing Systems, 2021, 34:12077-12090. |
[36] | MILLETARI F, NAVAB N, AHMADI S A. V-Net:Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation[C]//Proceedings of the 2016 Fourth International Conference on 3D Vision. Piscataway: IEEE, 2016:565-571. |
[37] | ALIBABA SECURITY, CHINA SOCIETY OF IMAGE AND GRAPHICS(CSIG). Real-World Image Forgery Localization Challenge(2022)[DB/OL].[2022-11-01].https://tianchi.aliyun.com/competition/entrance/531945/introduction. |
[38] | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature Pyramid Networks for Object Detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:936-944. |
[39] | ZOPH B, GHIASI G, LIN T Y, et al. Rethinking Pre-Training and Self-Training[J]. Advances in Neural Information Processing Systems, 2020, 33:3833-3845. |
[40] | ZHANG J, SANG J, YI Q, et al. ImageNet Pre-Training also Transfers Non-Robustness[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2023:3436-3444. |
[1] | ZHANG Xinyu, LIANG Yu, ZHANG Wei. Real-time smoke segmentation algorithm combining global and local information [J]. Journal of Xidian University, 2024, 51(1): 147-156. |
[2] | HUANG Heyuan, MU Caihong, FANG Yunfei, LIU Yi. Graph convolution neural network for recommendation using graph negative sampling [J]. Journal of Xidian University, 2024, 51(1): 86-99. |
[3] | DU Mingyang, DU Meng, PAN Jifei, BI Daping. Generative adversarial model for radar intra-pulse signal denoising and recognition [J]. Journal of Xidian University, 2023, 50(6): 133-147. |
[4] | XIONG Jingwei, PAN Jifei, BI Daping, DU Mingyang. Multi-scale convolutional attention network for radar behavior recognition [J]. Journal of Xidian University, 2023, 50(6): 62-74. |
[5] | ZHANG Peixu,HU Guanyu,YANG Xinyu. Cloth-changing person re-identification paradigm based on domain augmentation and adaptation [J]. Journal of Xidian University, 2023, 50(5): 87-94. |
[6] | WANG Kan, WANG Mengyang, LIU Xin, TIAN Guoqiang, LI Chuan, LIU Wei. Event detection by combining self-attention and CNN-BiGRU [J]. Journal of Xidian University, 2022, 49(5): 181-188. |
[7] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[8] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[9] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[10] | LI Kunlun,ZHANG Lu,XU Hongke,SONG Huansheng. Waveletdomain dilated network for fast low-dose CT image reconstruction [J]. Journal of Xidian University, 2020, 47(4): 86-93. |
[11] | DANG Jisheng,YANG Jun. 3D model recognition and segmentation based on multi-feature fusion [J]. Journal of Xidian University, 2020, 47(4): 149-157. |
[12] | WANG Jijun,HAO Ziyu,LI Hongliang. Optimization of memory access for the convolutional neural network training [J]. Journal of Xidian University, 2020, 47(2): 98-107. |
[13] | ZHU Suya,DU Jianchao,LI Yunsong,WANG Xiaopeng. Method for bridge crack detection based on the U-Net convolutional networks [J]. Journal of Xidian University, 2019, 46(4): 35-42. |
[14] | JIANG Xingguo,WAN Jinzhao,CAI Xiaodong,LI Haiou,CAO Yi. Algorithm for identification of fine-grained vehicles based on singular value decomposition and central metric [J]. Journal of Xidian University, 2019, 46(3): 82-88. |
[15] | LIANG Xiaoxi, CAI Xiaodong, WANG Meng, KU Haohua. Face recognition method for integrating the nested residual CNN and angular metric [J]. Journal of Xidian University, 2018, 45(6): 144-149. |
|