Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (1): 86-99.doi: 10.19665/j.issn1001-2400.20230214
• Computer Science and Technology • Previous Articles Next Articles
HUANG Heyuan1(), MU Caihong1(), FANG Yunfei1(), LIU Yi2()
Received:
2022-12-13
Online:
2023-09-14
Published:
2023-09-14
Contact:
MU Caihong
E-mail:hyuan_h@stu.xidian.edu.cn;caihongm@mail.xidian.edu.cn;fangyunfeixd@foxmail.com;yiliu@xidian.edu.cn
CLC Number:
HUANG Heyuan, MU Caihong, FANG Yunfei, LIU Yi. Graph convolution neural network for recommendation using graph negative sampling[J].Journal of Xidian University, 2024, 51(1): 86-99.
"
数据集方法 | Lastfm | Douban | Flixster | |||
---|---|---|---|---|---|---|
NDCG | Recall | NDCG | Recall | NDCG | Recall | |
MF[ | 0.186 87 | 0.243 87 | 0.084 48 | 0.128 49 | 0.109 57 | 0.177 65 |
GCN[ | 0.168 17 | 0.227 48 | 0.085 12 | 0.128 71 | 0.081 11 | 0.143 45 |
GC-MC[ | 0.155 66 | 0.212 96 | 0.074 96 | 0.112 52 | 0.065 22 | 0.127 30 |
NGCF[ | 0.188 49 | 0.251 77 | 0.085 25 | 0.127 45 | 0.117 43 | 0.196 97 |
DGCF[ | [0.203 02] | [0.262 29] | [0.098 95] | [0.145 59] | 0.131 42 | 0.219 57 |
LightGCN[ | 0.213 40 | 0.275 38 | 0.102 74 | 0.149 62 | [0.128 11] | [0.212 95] |
GCN-GNS | 0.221 27 | 0.285 5 | 0.127 28 | 0.170 96 | 0.130 58 | 0.218 20 |
[1] | LAVANYA R, SINGH U, TYAGI V. A Comprehensive Survey on Movie Recommendation Systems[C]//2021 International Conference on Artificial Intelligence and Smart Systems(ICAIS). Piscataway:IEEE, 2021:532-536. |
[2] |
CHEN R, HUA Q Y, CHANG Y S, et al. A Survey of Collaborative Filtering-Based Recommender Systems:from Traditional Methods to Hybrid Methods Based on Social Networks[J]. IEEE Access, 2018, 6:64301-64320.
doi: 10.1109/ACCESS.2018.2877208 |
[3] | KOREN Y, BELL R, VOLINSKY C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8):30-37. |
[4] | 史加荣, 李金红. 新型深度矩阵分解及其在推荐系统中的应用[J]. 西安电子科技大学学报, 2022, 49(3):171-182. |
SHI Jiarong, LI Jinhong. Novel Deep Matrix Factorization and Its Application in the Recommendation System[J]. Journal of Xidian University, 2022, 49(3):171-182. | |
[5] | 韩立锋, 陈莉, 史晓龙. 融合项目属性偏好的矩阵分解推荐模型[J]. 西安电子科技大学学报, 2022, 49(3):147-159. |
HAN Lifeng, CHEN Li, SHI Xiaolong. Matrix Decomposition Recommendation Model Incorporating Item Attribute Preference[J]. Journal of Xidian University, 2022, 49(3):147-159. | |
[6] | WU S W, SUN F, ZHANG W T, et al. Graph Neural Networks in Recommender Systems:a Survey[J]. ACM Computing Surveys(CSUR), 2023, 55(5):1-37. |
[7] | KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[C]//5th International Conference on Learning Representations(ICLR 2017). La Jolla: ICLR, 2017:1-14. |
[8] | VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[C]//6th International Conference on Learning Representations(ICLR 2018). La Jolla: ICLR, 2018:1-12. |
[9] | YU J, YIN H, XIA X, et al.(2022). Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2022). New York: ACM, 2022:1294-1303. |
[10] | MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed Representations of Words and Phrases and Their Compositionality[C]//Twenty-seventh Conference on Neural Information Processing Systems(NeurIPS 2013). San Diego: NIPS, 2013, 2:3111-3119. |
[11] | PARK D H, CHANG Y. Adversarial Sampling and Training for Semi-Supervised Information Retrieval[C]// Proceedings of the World Wide Web Conference(WWW’19). New York: ACM, 2019:1443-1453. |
[12] | WANG X, XU Y K, HE X N, et al.Reinforced Negative Sampling over Knowledge Graph for Recommendation[C]//Proceedings of the World Wide Web Conference(WWW’20). T New York: ACM, 2020:99-109. |
[13] | YANG Z, DING M, XU Z, et al. Region or Global? A Principle for Negative Sampling in Graph-Based Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6):6264-6277. |
[14] | ZHOU Y, ZHENG H X, HUANG X, et al. Graph Neural Networks:Taxonomy, Advances, and Trends[J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(1):1-54. |
[15] | WANG Y, LIU Z W, FAN Z W, et al. DSKReG:Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management(CIKM ‘21). New York: ACM, 2021:3513-3517. |
[16] | YANG L W, LIU Z W, DOU Y T, et al. ConsisRec:Enhancing GNN for Social Recommendation via Consistent Neighbor Aggregation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2021). New York: ACM, 2021:2141-2145. |
[17] | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Thirty-first Conference on Neural Information Processing Systems(NIPS 2017). San Diego: NIPS, 2017:1025-1035. |
[18] | SUN J N, ZHANG Y X, MA C, et al. Multi-Graph Convolution Collaborative Filtering[C]//2019 IEEE International Conference on Data Mining(ICDM 2019). Piscataway:IEEE, 2019:1306-1311. |
[19] | BERG R V D, KIPF T N, WELLING M. Graph Convolutional Matrix Completion[C]//24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining Deep Learning Day(KDD’18 Deep Learning Day). New York: ACM, 2018:1-9. |
[20] | WANG X, HE X N, WANG M, et al. Neural Graph Collaborative Filtering[C]// Proceedings of the 42th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2019). New York: ACM, 2019:165-174. |
[21] | HE X N, DENG K, WANG X, et al. LightGCN:Simplifying and Powering Graph Convolution Network for Recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2020). New York: ACM, 2020:639-648. |
[22] | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR:Bayesian Personalized Ranking from Implicit Feedback[C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence(UAI’09). Montreal: AUAI Press, 2009:452-461. |
[23] | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk:Online Learning of Social Representations[C]//In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD '14). New York: ACM, 2014:701-710. |
[24] | YING R, HE R N, CHEN K F, et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]//In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD'18). New York: ACM, 2018:974-983. |
[25] | CHEN J W, WANG C, ZHOU S, et al. SamWalker:Social Recommendation with Informative Sampling Strategy[C]//In Proceedings of the World Wide Web Conference(WWW’19). New York: ACM, 2019:228-239. |
[26] | WU L, YANG Y H, ZHANG K, et al. Joint Item Recommendation and Attribute Inference:An Adaptive Graph Convolutional Network Approach[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2020). New York: ACM, 2020:679-688. |
[27] | MU C, HUANG H, LIU Y, et al. Graph Convolutional Neural Network based on the Combination of Multiple Heterogeneous Graphs[C]//2022 International Conference on Data Mining Workshops(ICDMW). Piscataway:IEEE, 2022:732-740. |
[28] | GROVER A, LESKOVEC J. Node2vec: Scalable Feature Learning for Networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD’16). New York: ACM, 2016:855-864. |
[29] | GLOROT X, BENGIO Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks[C]//International Conference on Artificial Intelligence and Statistics(AISTATS 2010). New York: PMLR, 2010:249-256. |
[30] | YANG J H, CHEN C M, WANG C J, et al. HOP-rec:High-Order Proximity for Implicit Recommendation[C]//In Proceedings of the 12th ACM Conference on Recommender Systems(RecSys'18). New York: ACM, 2018:140-144. |
[31] | LIU Z W, MENG L, JIANG F, et al. Deoscillated Adaptive Graph Collaborative Filtering[C]// Topological,Algebraic and Geometric Learning Workshops 2022. New York: PMLR, 2022:248-257. |
[1] | ZHANG Xinyu, LIANG Yu, ZHANG Wei. Real-time smoke segmentation algorithm combining global and local information [J]. Journal of Xidian University, 2024, 51(1): 147-156. |
[2] | ZHONG Hao, BIAN Shan, WANG Chuntao. Real world image tampering localization combining the self-attention mechanism and convolutional neural networks [J]. Journal of Xidian University, 2024, 51(1): 135-146. |
[3] | DU Mingyang, DU Meng, PAN Jifei, BI Daping. Generative adversarial model for radar intra-pulse signal denoising and recognition [J]. Journal of Xidian University, 2023, 50(6): 133-147. |
[4] | WANG Kan, WANG Mengyang, LIU Xin, TIAN Guoqiang, LI Chuan, LIU Wei. Event detection by combining self-attention and CNN-BiGRU [J]. Journal of Xidian University, 2022, 49(5): 181-188. |
[5] | ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network [J]. Journal of Xidian University, 2021, 48(5): 15-22. |
[6] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[7] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[8] | LI Kunlun,ZHANG Lu,XU Hongke,SONG Huansheng. Waveletdomain dilated network for fast low-dose CT image reconstruction [J]. Journal of Xidian University, 2020, 47(4): 86-93. |
[9] | DANG Jisheng,YANG Jun. 3D model recognition and segmentation based on multi-feature fusion [J]. Journal of Xidian University, 2020, 47(4): 149-157. |
[10] | WANG Jijun,HAO Ziyu,LI Hongliang. Optimization of memory access for the convolutional neural network training [J]. Journal of Xidian University, 2020, 47(2): 98-107. |
[11] | ZHU Suya,DU Jianchao,LI Yunsong,WANG Xiaopeng. Method for bridge crack detection based on the U-Net convolutional networks [J]. Journal of Xidian University, 2019, 46(4): 35-42. |
[12] | JIANG Xingguo,WAN Jinzhao,CAI Xiaodong,LI Haiou,CAO Yi. Algorithm for identification of fine-grained vehicles based on singular value decomposition and central metric [J]. Journal of Xidian University, 2019, 46(3): 82-88. |
[13] | LIANG Xiaoxi, CAI Xiaodong, WANG Meng, KU Haohua. Face recognition method for integrating the nested residual CNN and angular metric [J]. Journal of Xidian University, 2018, 45(6): 144-149. |
[14] | ZHAO Boran;ZHANG Li;SHI Guangming;HUANG Rong;XU Xinran. Design of the programmable neural network processor based on the transport triggered architecture [J]. Journal of Xidian University, 2018, 45(4): 92-98. |
[15] | XIN Peng;XU Yuelei;MA Shiping;LI Shuai;LV Chao. Airport detection combining region proposal networks and adaptive pooling networks [J]. Journal of Xidian University, 2018, 45(3): 102-108. |
|