电子科技 ›› 2019, Vol. 32 ›› Issue (3): 31-36.doi: 10.16180/j.cnki.issn1007-7820.2019.03.007

• • 上一篇    下一篇

基于包簇概念的云资源分配成本优化模型

吕腾飞1,陈世平1,2,王磊1   

  1. 1. 上海理工大学 光电信息与计算机工程学院,上海 200093
    2. 上海理工大学 信息化办公室,上海 200093
  • 收稿日期:2018-03-18 出版日期:2019-03-15 发布日期:2019-03-01
  • 作者简介:吕腾飞(1993-),男,硕士研究生。研究方向:云计算,数据仓库,用户画像。|陈世平(1964-),男,博士,教授,博士生导师。研究方向:云计算,分布式计算,计算机网络。|王磊(1991-),男,硕士研究生。研究方向:云计算。
  • 基金资助:
    国家自然科学基金(61472256);上海市教委科研创新重点项目(12zz137);上海市一流学科建设项目(S1201YLXK)

Cost Optimization Model for Cloud Resource Allocation Based on Packet Cluster

LÜ Tengfei1,CHEN Shiping1,2,WANG Lei1   

  1. 1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
    2. Network and Information Center Office,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2018-03-18 Online:2019-03-15 Published:2019-03-01
  • Supported by:
    National Natural Science Foundation of China(61472256);Scientific Research and Innovation Key Project of Shanghai Municipal Education Commission(12zz137);Shanghai First Class Dis-cipline Construction Project(S1201YLXK)

摘要:

针对云数据中心因传统资源管理方式造成云服务成本过高问题,文中提出一种基于包、簇概念的资源集中管理分配优化模型。将用户的具体需求抽象为一个个独立的需求包,将数据中心的各类资源整合成一个个资源簇,并将CPU、RAM、带宽作为指标,建立成本评估模型,利用基于包簇概念下的改进粒子群算法,实现需求包到资源簇的部署映射。仿真实验结果表明,该优化模型可以有效降低资源分配过程中的营运成本,稳定提高资源平均利用率。

关键词: 云计算, 数据中心, 资源分配, 虚拟机, 包簇概念, 粒子群算法

Abstract:

To resolve the high cost in cloud computing data center caused by traditional resource management, a cost optimization model for cloud resource allocation based on packet-cluster was proposed. The model abstracted the specific needs of the users into individual requirements packages and integrated various resources of data center into resource clusters. Through the improved particle swarm algorithm based on the concept of package clustering, the deployment mapping of demand packages to resource clusters were finally implemented. The experimental results showed that the model was not only effective to reduce operating costs in resource allocation process but also improved the resource utilization of physical servers.

Key words: cloud computing, data center, resource allocation, VM, package cluster, particle swarm optimization

中图分类号: 

  • TP391