电子科技 ›› 2019, Vol. 32 ›› Issue (8): 61-65.doi: 10.16180/j.cnki.issn1007-7820.2019.08.013

• • 上一篇    下一篇

基于GAN的无人机航拍图像重建

曹琨,吴飞,钱小瑞,杨照坤   

  1. 上海工程技术大学 电子电气工程学院,上海 201600
  • 收稿日期:2018-08-13 出版日期:2019-08-15 发布日期:2019-08-12
  • 作者简介:曹琨(1994-),女,硕士研究生。研究方向:深度学习、图像处理。|吴飞(1968-),男,博士,教授。研究方向:计算机组织与系统结构、分布式多媒体技术。
  • 基金资助:
    国家自然科学基金(61272097);上海市科技学术委员会资助项目(13510501400);上海市科委重点项目(18511101600)

Aerial Image Reconstruction of Drone Based on GAN

CAO Kun,WU Fei,QIAN Xiaorui,YANG Zhaokun   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201600,China
  • Received:2018-08-13 Online:2019-08-15 Published:2019-08-12
  • Supported by:
    National Natural Science Foundation of China(61272097);Shanghai Municipal Committee of Science and Technology Project(13510501400);Shanghai Municipal Committee of Science and Technology Project(18511101600)

摘要:

传统无人机采集传输过程中所传输的数据量常常造成无人机电池的高消耗。针对此类问题,文中提出一种融合超分辨重建和灰度图像彩色化的CsRGAN模型。通过生成网络对低分辨的灰度图像进行重建:先将图片进行分辨率放大,再进行色彩填充,然后通过判别器进行图片修正,最终将图片重建为彩色高清图像。实验结果表明,在固定区域下,所提出的模型能够在保证成像质量的同时减少无人机航拍的传输数据量,提高无人机的电池利用率,且模型具有较强的鲁棒性。

关键词: 无人机, 超分辨率, 色彩填充, 图像重建, 生成对抗式网络, 固定区域

Abstract:

The amount of data transmitted during the traditional UAV acquisition and transmission process often resulted in high consumption of the UAV battery. Aiming at solving the problem, a CsRGAN model that combined super-resolution reconstruction and gray-scale image colorization was proposed. The low resolution grayscale image was reconstructed by generating a network: the image was first subjected to resolution amplification, color filling was performed, and then the image was corrected by the discriminator, and finally the image was reconstructed into a color high-definition image. The experimental results showed that under the fixed area, the model could reduce the transmission data of the drone aerial photography and improve the battery utilization of the drone under the condition of ensuring the imaging quality. These results proved the model had strong robustness.

Key words: UVA, super-resolution, image colorization, image reconstruction, GAN, fix area

中图分类号: 

  • TP391