电子科技 ›› 2021, Vol. 34 ›› Issue (1): 65-70.doi: 10.16180/j.cnki.issn1007-7820.2021.01.012

• • 上一篇    

基于深度相机的小型无人机室内三维地图构建

张阵委,章伟,龙林,颜晨航   

  1. 上海工程技术大学 机械与汽车工程学院,上海 201620
  • 收稿日期:2019-10-24 出版日期:2021-01-15 发布日期:2021-01-22
  • 作者简介:张阵委(1993-),男,硕士研究生。研究方向:无人机视觉智能避障算法。章伟(1977-),男,博士,副教授。研究方向:机器视觉避障算法、非线性控制。龙林(1976-),男,硕士研究生。研究方向:智能化控制、物联网。颜晨航(1996-),男,硕士研究生。研究方向:机器视觉智能避障算法。
  • 基金资助:
    国家自然科学基金(51505273)

3D Map Construction of Micro UAV Based on Depth Camera

ZHANG Zhenwei,ZHANG Wei,LONG Lin,YAN Chenhang   

  1. School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2019-10-24 Online:2021-01-15 Published:2021-01-22
  • Supported by:
    National Natural Science Foundation of China(51505273)

摘要:

为了解决小型无人机在室内光线不足情况下的避障以及路径规划问题,设计了一种基于深度相机的无人机室内地图构建系统。文中使用Pixhawk控制板和低成本嵌入式结构光深度相机硬件平台,为避障以及路径规划目标提供室内环境信息。采用反传感器模型算法,利用深度相机和位姿传感器提供的信息来筛选处理出有效的障碍物信息,并构建室内的三维地图,其中深度相机通过激光扫描的方式来获取障碍物点云的描述信息,利用位姿传感器获取无人机的高度信息。实验结果表明,使用该系统能够快速获取室内地图,对障碍物的判断准确率比较高,且不受光线影响,可以广泛应用于无人机的室内导航,实现不依赖外部光源的室内无人机地图构建系统。

关键词: 无人机, 反传感器模型, 实时性, 深度相机标定, 光源, 结构光相机

Abstract:

In order to solve the problem of obstacle avoidance and path planning when the small drone is insufficient in indoor light. In this paper, an indoor map construction system of UAV based on depth camera is designed and implemented. The pixhawk control board and low-cost embedded structure optical depth camera hardware platform are used to provide indoor environmental information for obstacle avoidance and path planning. Anti-sensor model algorithm is adopted, the information provided by the depth camera, pose sensor to filter are utilized to select and process effective obstacle information. A 3D map of the interior is established, and the depth camera acquires the description information of the obstacle point cloud by means of laser scanning. The position sensor is used to acquire the height information of the drone. The experimental results show the system could quickly acquire indoor maps, and the accuracy of the obstacles is relatively high, and it is not affected by light. The proposed system can be widely used for indoor navigation of drones, and realizes an indoor drone map construction system that does not rely on external light sources.

Key words: UAV, anti-sensor model, real-time, depth camera calibration, light source, structured light camera

中图分类号: 

  • TP242