电子科技 ›› 2019, Vol. 32 ›› Issue (9): 42-46.doi: 10.16180/j.cnki.issn1007-7820.2019.09.009

• • 上一篇    下一篇

基于Faster-RCNN的极验点选式验证码识别

周文凯,韩芳,孔维健   

  1. 东华大学 信息科学与技术学院,上海 201620
  • 收稿日期:2018-09-12 出版日期:2019-09-15 发布日期:2019-09-19
  • 作者简介:周文凯(1994-),男,硕士研究生。研究方向:图像处理,虚拟现实。|韩芳(1981-),女,博士,教授。研究方向:智能系统与神经动力学。|孔维健(1983-),男,博士,讲师。研究方向:计算智能,复杂工业过程建模与优化。
  • 基金资助:
    国家自然科学基金(11572084,11472061)(11572084);国家自然科学基金(11572084,11472061)(11472061);中央高校基本科研业务费(18D210402)

Point-selective Geetest CAPTCHA Recognition Based on Faster-RCNN

ZHOU Wenkai,HAN Fang,KONG Weijian   

  1. School of Information Science and Technology,Donghua University,Shanghai 201620,China
  • Received:2018-09-12 Online:2019-09-15 Published:2019-09-19
  • Supported by:
    National Natural Science Foundation of China(11572084);National Natural Science Foundation of China(11472061);The Fundamental Research Funds for the Central Universities(18D210402)

摘要:

针对传统方法难以识别极验点选式验证码的问题,文中提出一种基于Faster-RCNN目标检测模型和卷积神经网络的识别方法。通过简化的RPN提高Faster-RCNN对于背景图片文本定位的精度,再设计卷积神经网络对文本进行分类识别,并训练Tesseract-OCR识别库对信息提示文本进行识别,实现背景图片文本识别结果与信息提示文本识别结果一一对应,达到识别此类验证码的目的。实验结果表明,该方法识别此类验证码的准确率达到72.4%。

关键词: 极验验证码, Faster-RCNN, 卷积神经网络, Tesseract-OCR

Abstract:

In view of the problem that traditional methods were difficult to recognize the geetest point-selective CAPTCHA , this paper proposed a recognition method that based on Faster-RCNN object detection model and convolutional neural network. Firstly, it improved the accuracy of text positioning by simplified RPN, then designed convolutional neural network to classify and identify texts,and trained the Tesseract-OCR identification databases to recognize the message texts. Finally, the result of texts recognition which embedded into background picture corresponded to the result of message texts recognition, then it reached the purpose of CAPTCHA recognition. Experimental results showed that the accuracy of this recognition method up to 72.4%.

Key words: geetest CAPTCHA recognition, Faster-RCNN, convolutional neural network, Tesseract-OCR

中图分类号: 

  • TP391