[1] |
胡健, 柳青, 王海林 . 验证码安全与验证码绕过技术[J]. 计算机应用, 2016,36(S1):37-41
|
|
Hu Jian, Liu Qing, Wang Hailin . CAPTCHA security and bypass technique[J]. Journal of Computer Applications, 2016,36(S1):37-41.
|
[2] |
孟凯 . 基于SVM的空心验证码识别技术研究[D]. 重庆:重庆邮电大学, 2017.
|
|
Meng Kai . Research on recognition technology of hollow CHPTCHAs based on SVM[D]. Chongqing: Chongqing University of Posts and Telecommunication, 2017.
|
[3] |
王斌君, 王靖亚, 杜凯选 . 验证码技术的攻防对策研究[J]. 计算机应用研究, 2013,30(9):2777-2779.
|
|
Wang Binjun, Wang Jingya, Du Kaixuan . Research on attach strategy of CHPTCHA technology[J]. Application Research of Computers, 2013,30(9):2777-2779.
|
[4] |
汪中 . 验证码识别技术及应用[J]. 计算机光盘软件与应用, 2014,17(5):167-168.
|
|
Wang Zhong . CHPTCHA recognition technology and application[J]. Computer CD Software and Application, 2014,17(5):167-168.
|
[5] |
尹龙 . 扭曲粘连字符验证码识别研究[D]. 合肥:中国科学技术大学, 2014.
|
|
Yin Long . Recognition of distorted and merged text-based CHPTCHA[D]. Hefei:University of Science and Technology of China, 2014.
|
[6] |
安改换 . 扭曲粘连字符验证码识别技术研究[D]. 上海:上海应用技术大学, 2016.
|
|
An Gaihuan . Recognition technology research of distorted and merged text-based CHPTCHA[D]. Shanghai:Shanghai Institution of Technology, 2016.
|
[7] |
唐海涛 . 自组织增量神经网络的验证码识别模型与算法[D]. 广州:广东工业大学, 2016.
|
|
Lu P, Shan L, Li J , et al. A new segmentation method for connected characters in CAPTCHA[C].Changshu:International Conference on Control, Automation and Information Sciences ( ICCAIS), 2015.
|
[9] |
汪洋, 许映秋, 彭艳兵 . 基于KNN技术的校内网验证码识别[J].计算机与现代化, 2017(2):93-97.
|
|
Wang Yang, Xu Yingqiu, Peng Yanbing . KNN-based verification code recognition on campus network[J]. Computer and Modernization, 2017(2):93-97.
|
[10] |
Wang Ye, Lu Mi. A self-adaptive algorithm to defeat text-based CAPTCHA [C].Taipei:IEEE International Confer-ence on Industrial Technology, 2016.
|
[11] |
Garg G, Pollett C . Neural network CAPTCHA crackers[C].San Francisco:Future Technologies Conference (FTC), 2016.
|
[12] |
刘达荣, 张远平, 汤茂斌 , 等. 基于渐进式学习的神经网络端到端验证码识别[J].计算机技术与发展, 2018(9):9-13.
|
|
Liu Darong, Zhang Yuanping, Tang Maobin , et al. End-to-end verification code identification of neural network based on progressive learning[J].Computer Technology and Development, 2018(9):9-13.
|
[13] |
熊海朋, 陈洋洋, 陈春玮 . 基于卷积神经网络的场景图像文本定位研究[J]. 电子科技, 2018,31(1):50-53.
|
|
Xiong Haipeng, Chen Yangyang, Chen Chunyu . Text location in image based on convolutional neural network[J]. Electronic Science and Technology, 2018,31(1):50-53.
|
[14] |
Ren S, Girshick R . Faster R-CNN:towards real-time objection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39(6):1137-1149.
|
[15] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [C].San Diego:International Conference on Learning Representations, 2015.
|
[16] |
Li Q, An W, Zhou A , et al. Recognition of offline handwritten Chinese characters using the tesseract open source OCR engine[C].Hangzhou:8 th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2016.
|