电子科技 ›› 2024, Vol. 37 ›› Issue (4): 30-37.doi: 10.16180/j.cnki.issn1007-7820.2024.04.005

• • 上一篇    下一篇

基于CEEMD-ITSA-BiLSTM组合模型的短期负荷预测

高典, 张菁   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2022-11-25 出版日期:2024-04-15 发布日期:2024-04-19
  • 作者简介:高典(1996-),男,硕士研究生。研究方向:负荷预测。
    张菁(1969-),女,副教授。研究方向:电气工程。
  • 基金资助:
    国家自然科学基金(61902237)

Short-Term Load Forecasting Based on CEEMD-ITSA-BiLSTM Combined Model

GAO Dian, ZHANG Jing   

  1. School of Electric and Electronic Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2022-11-25 Online:2024-04-15 Published:2024-04-19
  • Supported by:
    National Natural Science Foundation of China(61902237)

摘要:

准确预测电力系统短期负荷有助于灵活规划系统资源、合理安排机组工作调度以及提高系统运行效率。针对负荷预测精度问题,文中提出了一种基于CEEMD-ITSA-BiLSTM(Complete Ensemble Empirical Mode Decomposition-Improved Tunicate Swarm Algorithm-Bidirectional Long Short-Term Memory)的短期负荷预测模型。对时序性负荷数据进行CEEMD分解,得到若干个平稳的IMF(Intrinsic Mode Function),并对每个IMF进行BiLSTM建模预测。为了提高BiLSTM的精度,采用ITSA算法对BiLSTM的隐含层节点数、学习率和训练次数等超参数进行参数寻优,建立CEEMD-ITSA-BiLSTM负荷预测模型。文中以实际负荷数据进行仿真实验,对比了单一BiLSTM和不同算法优化的BiLSTM模型,结果表明CEEMD-ITSA-BiLSTM模型的RMSE(Root Mean Square Error)、MAE(Mean Absolute Error)和MAPE(Mean Absolute Percentage Error)误差指标相比于BiLSTM模型分别提高了48.54%、51.32%和44.78%,显著低于其他对比模型。

关键词: 短期负荷预测, 预测精度, 完全集成经验模态分解, 本征模函数, 被囊群算法, 参数寻优, 双向长短期记忆神经网络, 误差指标

Abstract:

Accurate short-term load forecasting of power system is helpful to flexible planning of system resources, reasonable scheduling of units, and improvement of system operation efficiency. In view of the accuracy of load forecasting, this study proposes a short-term load forecasting model based on CEEMD-ITSA-BiLSTM (Complete Ensemble Empirical Mode Decomposition-Improved Tunicate Swarm Algorithm-Bidirectional Long Short-Term Memory). CEEMD decomposition is carried out on the time series load data to obtain several stable IMF (Intrinsic Mode Function), and BiLSTM modeling and prediction are carried out for each IMF. To improve the accuracy of BiLSTM, ITSA algorithm is used to optimize the parameters of the super parameters such as the number of hidden layer nodes, learning rate and training times of BiLSTM, and CEEMD-ITSA-BiLSTM load forecasting model is established. The simulation experiment is conducted with the actual load data, and the single BiLSTM model and the BiLSTM model optimized by different algorithms are compared. The results show that the RMSE (Root Mean Square Error), MAE (Mean Absolute Error) and MAPE (Mean Absolute Percentage Error) error indexes of CEEMD-ITSA-BiLSTM model are increased by 48.54%, 51.32% and 44.78%, respectively when compared with the BiLSTM model, and are significantly lower than other comparison models.

Key words: short term load forecasting, prediction accuracy, CEEMD, IMF, TSA, parameter optimization, BiLSTM neural network, error index

中图分类号: 

  • TP18