[1] |
廖旎焕, 胡智宏, 马莹莹, 等. 电力系统短期负荷预测方法综述[J]. 电力系统保护与控制, 2011, 39(1):147-152.
|
|
Liao Nihuan, Hu Zhihong, Ma Yingying, et al. Review of the short-term load forecasting methods of electric power system[J]. Power System Protection and Control, 2011, 39(1):147-152.
|
[2] |
李东东, 覃子珊, 林顺富, 等. 基于混沌时间序列法的微网短期负荷预测[J]. 电力系统及其自动化学报, 2015, 27(5):14-18.
|
|
Li Dongdong, Qin Zishan, Lin Shunfu, et al. Short-term load forecasting for microgrid based on method of chaotic time series[J]. Proceedings of the CSU-EPSA, 2015, 27(5):14-18.
|
[3] |
李晨熙. 基于ARIMA模型的短期电力负荷预测[J]. 吉林电力, 2015, 43(6):22-24.
|
|
Li Chenxi. A short-term load forecasting model based on ARIMA[J]. Jilin Electric Power, 2015, 43(6):22-24.
|
[4] |
孙珍. 基于协方差稳健模糊线性回归的系统负荷预测数学模型[J]. 现代电子技术, 2019, 42(15):94-96,100.
|
|
Sun Zhen. System load forecasting mathematical model based on covariance robust fuzzy linear regression[J]. Modern Electronics Technique, 2019, 42(15):94-96,100.
|
[5] |
陈培垠, 方彦军. 基于卡尔曼滤波预测节假日逐点增长率的电力系统短期负荷预测[J]. 武汉大学学报(工学版), 2020, 53(2):139-144.
|
|
Chen Peiyin, Fang Yanjun. Short term load forecasting of power system for holiday point by point growth rate based on Kalman filtering[J]. Engineering Journal of Wuhan University, 2020, 53(2):139-144.
|
[6] |
王瑞, 陈诗雯, 逯静. 基于模糊聚类的BOA-SVR分时段精细化短期负荷预测[J]. 武汉大学学报(工学版), 2021, 54(12):1140-1149.
|
|
Wang Rui, Chen Shiwen,Lu Jing.Time division refined shortterm load forecasting based on BOASVR and fuzzy clustering[J]. Engineering Journal of Wuhan University, 2021, 54(12):1140-1149.
|
[7] |
张刚, 刘福潮, 王维洲, 等. 电网短期负荷预测的BP-ANN方法及应用[J]. 电力建设, 2014, 35(3):54-58.
doi: 10.3969/j.issn.1000-7229.2014.03.010
|
|
Zhang Gang, Liu Fuchao, Wang Weizhou, et al. BP-ANNmethod for power grid short-term load forecasting and its application[J]. Electric Power Construction, 2014, 35(3):54-58.
|
[8] |
谢丽蓉, 王斌, 包洪印, 等. 基于EEMD-WOA-LSSVM的超短期风电功率预测[J]. 太阳能学报, 2021, 42(7):290-296.
|
|
Xie Lirong, Wang Bin, Bao Hongyin, et al. Super-short-term wind power forecasting based on EEMD-WOA-LSSVM[J]. Acta Energiae Solaris Sinica, 2021, 42(7):290-296.
|
[9] |
张淑清, 段晓宁, 张立国, 等. Tsne降维可视化分析及飞蛾火焰优化ELM算法在电力负荷预测中应用[J]. 中国电机工程学报, 2021, 41(9):3120-3130.
|
|
Zhang Shuqing, Duan Xiaoning, Zhang Liguo, et al. Tsne dimension reduction visualization analysis and moth flame optimized ELM algorithm applied in power load forecasting[J]. Proceedings of the CSEE, 2021, 41(9):3120-3130.
|
[10] |
龚飘怡, 罗云峰, 方哲梅, 等. 基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法[J]. 计算机应用, 2021, 41(Z1):81-86.
|
|
Gong Piaoyi, Luo Yunfeng, Fang Zhemei, et al. Short-term power load forecasting method based on Attention-BiLSTM-LSTM neural network[J]. Journal of Computer Applications, 2021, 41(Z1):81-86.
|
[11] |
李玉志, 刘晓亮, 邢方方, 等. 基于Bi-LSTM和特征关联性分析的日尖峰负荷预测[J]. 电网技术, 2021, 45(7):2719-2730.
|
|
Li Yuzhi, Liu Xiaoliang, Xing Fangfang, et al. Daily peak load prediction based on correlation analysis and Bi-directional long short-term memory network[J]. Power System Technology, 2021, 45(7):2719-2730.
|
[12] |
朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-BiLSTM的短期电力负荷预测[J]. 电网技术, 2021, 45(11):4532-4539.
|
|
Zhu Lingjian, Xun Zihan, Wang Yuxin, et al. Short-term power load forecasting based on CNN-BiLSTM[J]. Power System Technology, 2021, 45(11):4532-4539.
|
[13] |
孙辉, 杨帆, 高正男, 等. 考虑特征重要性值波动的MI-BI-LSTM短期负荷预测[J]. 电力系统自动化, 2022, 46(8):95-103.
|
|
Sun Hui, Yang Fan, Gao Zhengnan, et al. Short-term load forecasting based on mutual information and Bi-directional long short-term memory network considering fluctuation in importance values of features[J]. Automation of Electric Power Systems, 2022, 46(8):95-103.
|
[14] |
Shi H, Miao K, Ren X. Short-term load forecasting based on CNN-BiLSTM with Bayesian optimization and attention mechanism[J]. Concurrency Computation Practice and Experience, 2021, 10(2):66-76.
|
[15] |
Guo Y, Li Y, Qiao X, et al. BiLSTM multitask learning-based combined load forecasting considering the loads coupling relationship for multienergy system[J]. IEEE Transactions on Smart Grid, 2022, 13(5):3481-3492.
doi: 10.1109/TSG.2022.3173964
|
[16] |
Zheng H, Yuan J, Chen L. Short-term load forecasting using EMD-LSTM neural networks with a XGBoost algorithm for feature importance evaluation[J]. Energies, 2017, 10(8):1168-1188.
doi: 10.3390/en10081168
|
[17] |
Huang S, Zheng J, Pan H, et al. Order-statistic filtering Fourier decomposition and its application to rolling bearing fault diagnosis[J]. Journal of Vibration and Control, 2022, 28(13-14):1605-1620.
doi: 10.1177/1077546321997598
|
[18] |
Ding Y F, Chen Z J, Zhang H W, et al. A short-term wind power prediction model based on CEEMD and WOA-KELM[J]. Renewable Energy, 2022, 189(4):188-198.
doi: 10.1016/j.renene.2022.02.108
|
[19] |
Liu X, Zhang Y, Zhang Q. Comparison of EEMD-ARI-MA,EEMD-BP and EEMD-SVM algorithms for predicting the hourly urban water consumption[J]. Journal of Hydroinformatics, 2022, 24(3):535-558.
doi: 10.2166/hydro.2022.146
|
[20] |
Kaur S, Awasthi L K, Sangal A L, et al. Tunicate swarm algorithm:A new bio-inspired based metaheuristic paradigm for global optimization[J]. Engineering Applications of Artificial Intelligence, 2020, 90(10):3541-3570.
|
[21] |
刘辉, 凌宁青, 罗志强, 等. 基于TCN-LSTM和气象相似日集的电网短期负荷预测方法[J]. 智慧电力, 2022, 50(8):30-37.
|
|
Liu Hui, Ling Ningqing, Luo Zhiqiang, et al. Power grid short-term load forecasting method based on TCN-LSTM and meteorological similar day sets[J]. Smart Power, 2022, 50(8):30-37.
|
[22] |
程换新, 黄震. 基于改进PSO优化RNN的短期电力负荷预测模型[J]. 电子测量技术, 2019, 42(20):94-98.
|
|
Cheng Huanxin, Huang Zhen. Short-term electric load forecasting model based on improved PSO optimized RNN[J]. Electronic Measurement Technology, 2019, 42(20):94-98.
|
[23] |
Dhiman G, Kumar V. Seagull optimization algorithm:Theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165(1):169-196.
doi: 10.1016/j.knosys.2018.11.024
|
[24] |
Mirjaliu S, Mirjaliu S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61.
doi: 10.1016/j.advengsoft.2013.12.007
|
[25] |
冯先丁, 魏镜弢, 吴张永, 等. 基于PCA-PSO-SVM的球磨机负荷预测研究[J]. 电子科技, 2022, 35(1):29-34.
|
|
Feng Xianding, Wei Jingtao, Wu Zhangyong, et al. Research on load forcast of ball mill based on PCA-PSO-SVM[J]. Electronic Science and Technology, 2022, 35(1):29-34.
|
[26] |
张崇崇, 黄亚宇. GA-BP神经网络对片烟结构的预测研究[J]. 电子科技, 2022, 35(6):35-42.
|
|
Zhang Chongchong, Huang Yayu. A GA-BP neural net-work for predicting the structure of leaf tobacco[J]. Electronic Science and Technology, 2022, 35(6):35-42.
|