›› 2012, Vol. 25 ›› Issue (3): 13-.

• 论文 • 上一篇    下一篇

基于最小熵聚类的社团检测算法

孙茜雅   

  1. (中国电子科技集团公司第20研究所 通信事业部,陕西 西安 710068)
  • 出版日期:2012-03-15 发布日期:2012-03-21
  • 作者简介:孙茜雅(1984—),女,本科。研究方向:聚类分析,复杂网络分析,网络安全等。

Community Detection Method Based on Minimum Entropy

 SUN Xi-Ya   

  1. (Communications Division,The 20th Research Institute,China Electronics Technology Group Corporation,Xi'an 710068,China)
  • Online:2012-03-15 Published:2012-03-21

摘要:

提出一种基于最小熵的社团结构检测算法。首先用模糊关系表示交互网络,一种基于熵的测度来确定模糊关系的隶属度,且熵越小,节点越相似。然后提出一种新的模糊关系合成规则,通过应用该规则,模糊关系被转换为最小关系。最后,通过熵的值把这个最小模糊关系划分成一个个社团。在人工网络与真实网络中的测试结果表明,该算法可以有效地识别社团结构。

关键词: 社团结构, 模糊关系, 熵, 聚类

Abstract:

This paper proposes an efficient method based on minimum entropy for community detection in complex networks.First,an interaction network is denoted by a fuzzy relation,and the entropy is proposed to determine the membership grade of the relation,and the lower the entropy,the more similar the vertices.Then,the fuzzy relation is transformed into a minimal fuzzy relation by a novel composition rule of fuzzy relation that is presented here.Finally,this minimal fuzzy relation is partitioned into clusters based on the value of entropy.The results both in artificial networks and real-world networks show that our method is efficient in community detection.

Key words: community structure;fuzzy relation;entropy;clustering

中图分类号: 

  • TP301.6