›› 2016, Vol. 29 ›› Issue (1): 40-.

• 论文 • 上一篇    下一篇

基于粗糙特征量的短期电力负荷预测

马立新,郑晓栋,尹晶晶   

  1. (上海理工大学 光电信息与计算机工程学院,上海 200093)
  • 出版日期:2016-01-15 发布日期:2016-02-25
  • 作者简介:马立新(1960—),男,教授,博士。研究方向:电力系统稳定性等。
  • 基金资助:

    国家自然科学基金资助项目(6120576);国家科技部政府间科技合作基金资助项目(2009014)

Short-term Load Forecasting Based on Rough Characteristic-component Algorithm

MA Lixin,ZHENG Xiaodong,YIN Jingjing   

  1. (School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
  • Online:2016-01-15 Published:2016-02-25

摘要:

针对负荷特征一直是实际电力负荷预测中的重大问题。提出了基于粗糙特征量的约简算法。通过对天气及负荷历史数据进行挖掘,找到负荷的关键特征,并与径向基网络结合建立了负荷预测模型。算例结果表明,与按经验选取输入的传统网络相比,预测准确度有了明显的提高,更适用于电力负荷预测。

关键词: 电力系统, 径向基, 粗糙特征量, 负荷预测

Abstract:

The key characteristic of mining influence the load is always an important problem in power load forecasting.A reduction algorithm through rough characteristic-component algorithm is introduced.The key characteristics of the date of weather and history load data are discussed,and then a model combined with radical basis function neural network is established.Forecasting results of calculation examples show that the forecasting accuracy is obviously improved and more suitable for short-term load forecasting compared with traditional radical basis function neural network model that chooses input parameters in the light of experience.

Key words: power system;RBF;rough characteristic-component;load forecasting

中图分类号: 

  • TM715