›› 2016, Vol. 29 ›› Issue (11): 154-.

• 论文 • 上一篇    下一篇

基于支持向量机的贯流风叶叶片粘连缺陷诊断

李健坤 1,宋寿鹏 1,李建平 2,李翔 1,丁楠 1   

  1. (1江苏大学 机械工程学院,江苏 镇江 212013;2.中山市朗迪电器有限公司,广东 中山 528427)
  • 出版日期:2016-11-15 发布日期:2016-11-24
  • 作者简介:李健坤(1989-),男,硕士研究生。研究方向:工业智能化在线检测与技术及设备。宋寿鹏(1967-),男,博士,教授。研究方向:超声波检测新原理及检测设备,现代信号处理等。

Diagnosis of Crossflow Fan Leaf Blade Adhesion Defects Based on Support Vector Machine

LI Jiankun1, SONG Shoupeng1, LI Jianping2, LI Xiang1, DING Nan1   

  1. (1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China;
    2. Zhongshan Langdi Electronic Limited Company, Zhongshan 528427, China)
  • Online:2016-11-15 Published:2016-11-24

摘要:

为了提高贯流风叶叶片粘连缺陷诊断的准确率和鲁棒性,提出了一种基于支持向量机的贯流风叶叶片粘连缺陷诊断方法。该方法以线性核函数为内积核函数,在追求分类间隔最大化的前提下,建立了叶片粘连缺陷诊断数学模型。仿真和实际测试结果表明,即使在使用较少的训练样本的情况下,该模型仍能达到较高的叶片粘连缺陷诊断率,效果优于传统的诊断方法,为贯流风叶叶片粘连缺陷诊断提供了新的途径。

关键词: 贯流风叶, 粘连, 支持向量机, 核函数, 数学模型, 诊断

Abstract:

A defects diagnosis method based on support vector machine is proposed for better accuracy and robustness of crossflow fan leaf blade adhesion defects diagnosis. The linear kernel is used as the inner product kernel function. The mathematical model of crossflow fan leaf blade adhesion defects diagnosis is established under the premise of pursuing maximum interval in classification. The simulation and actual test results show that the model reaches a higher accuracy of leaf blade adhesion defects diagnosis even with less training samples and has better performance than the traditional defects diagnosis methods.

Key words: cross flow fan, adhesion, support vector machine, kernel function, mathematical model, diagnosis

中图分类号: 

  • TP277