电子科技 ›› 2019, Vol. 32 ›› Issue (11): 7-11.doi: 10.16180/j.cnki.issn1007-7820.2019.11.002

• • 上一篇    下一篇

基于滤波重构和卷积神经网络的心电信号分类

韦张跃昊,钱升谊   

  1. 杭州电子科技大学 电子信息学院,浙江 杭州 310018
  • 收稿日期:2018-11-06 出版日期:2019-11-15 发布日期:2019-11-15
  • 作者简介:韦张跃昊(1994-),男,硕士研究生。研究方向:信号处理、深度学习。
  • 基金资助:
    浙江省自然基金重点项目(LZ14F020002)

ECG Signal Classification Based on Filtering-Reconstruction and Convolutional Neural Network

WEI Zhangyuehao,QIAN Shengyi   

  1. School of Electronic Information,Hangzhou Dianzi University, Hangzhou 310018,China
  • Received:2018-11-06 Online:2019-11-15 Published:2019-11-15
  • Supported by:
    The Key Project Supported by Zhejiang Provincial Natural Science Foundation of China(LZ14F020002)

摘要:

计算机自动分类心电信号能够减轻医生工作压力并大幅提高诊断速度和准确率。文中针对传统算法中特征提取过程复杂及抗干扰能力弱的问题,提出了一种结合滤波重构和卷积神经网络的心电信号分类算法。该算法首先通过传统信号滤波和心拍序列重构去除原始心电信号中的噪声干扰,然后构建卷积神经网络来自动学习心电信号特征并完成分类。在PhysioNet/CinC Challenge 2017数据集上的分类实验结果表明,该方法的平均F1(查准率、召回率的调和平均)达到了0.8471,优于人工特征提取和常规卷积网络方法,且具有很强的抗干扰能力。

关键词: 卷积神经网络, 心电信号, 特征自动提取, 序列重构, 信号滤波, 分类算法

Abstract:

Automatic classification of ECG signals by computers can relieve work pressure of doctors and greatly improve diagnosis speed and accuracy. Aiming at the problem of complex feature extraction process and weak anti-interference ability in traditional algorithms, this paper proposed an ECG signal classification algorithm combined with filtering-reconstruction and convolutional neural networks. Firstly, the traditional signal filtering and heartbeat sequence reconstruction were used to remove the noise interference in the original ECG signal, and then the convolutional neural network was constructed to automatically learn the ECG signal feature and completed the classification. The results of the classification experiments on the PhysioNet/CinC Challenge 2017 dataset showed that this method had an average F1 (the average of the precision and recall ratio) of 0.8471, which was better than the methods based on artificial feature extraction and conventional convolutional network, and had strong anti-interference ability.

Key words: convolutional neural network, electrocardiogram signal, automatic feature extraction, sequence reconstruction, signal filtering, classification algorithm

中图分类号: 

  • TP391