[1] |
Zhao J, Duan Y, Liu X. Uncertainty analysis of weather forecast data for cooling load forecasting based on the Monte Carlo method[J]. Energies, 2018,11(7):1900-1919.
|
[2] |
Dyson M E H, Borgeson S D, Tabone M D, et al. Using smart meter data to estimate demand response potential, with application to solar energy integration[J]. Energy Policy, 2014,73(3):607-619.
|
[3] |
何大四, 张旭. 改进的季节性指数平滑法预测空调负荷分析[J]. 同济大学学报(自然科学版), 2005(12):1672-1676.
|
|
He Dasi, Zhang Xu. Analysis of air conditioning load prediction by modified seasonal exponential smoothing model[J]. Journal of Tongji University (Natural Science), 2005(12):1672-1676.
|
[4] |
任志超, 杜新伟, 王海燕, 等. 调温负荷的估算方法及影响因素研究[J]. 现代电力, 2014,31(3):80-85.
|
|
Ren Zhichao, Du Xinwei, Wang Haiyan, et al. Research on estimation method of temperature- adjusting load and its influence factors[J]. Modern Electric Power, 2014,31(3):80-85.
|
[5] |
王东, 史晓霞, 尹交英. 不同核函数的支持向量机用于空调负荷预测的对比研究[J]. 电工技术学报, 2015,30(S1):531-535.
|
|
Wang Dong, Shi Xiaoxia, Yin Jiaoying. Prediction on hourly load of air conditioning by RBF support vector machine[J]. Transactions of China Electrotechnical Society, 2015,30(S1):531-535.
|
[6] |
赵超, 戴坤成. 自适应加权最小二乘支持向量机的空调负荷预测[J]. 重庆大学学报, 2016,39(1):55-64.
|
|
Zhao Chao, Dai Kuncheng. Modeling air-conditioning load forecasting based on adaptive weighted least squares support vector machine[J]. Journal of Chongqing University, 2016,39(1):55-64.
|
[7] |
Liao G C. Hybrid improved differential evolution and wavelet neural network with load forecasting problem of air conditioning[J]. International Journal of Electrical Power & Energy Systems, 2014,61(1):673-682.
|
[8] |
李帆, 曲世琳, 于丹, 等. 基于运行数据人工神经网络的空调系统逐时负荷预测[J]. 建筑科学, 2014,30(2):72-75.
|
|
Li Fan, Qu Shilin, Yu Dan, et al. Prediction on hourly load of air conditioning system based on operating data and artificial neural network[J]. Building Science, 2014,30(2):72-75.
|
[9] |
Fu G. Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system[J]. Energy, 2018,148(1):269-282.
doi: 10.1016/j.energy.2018.01.180
|
[10] |
Palchak D, Suryanarayanan S, Zimmerle D. An artificial neural network in short-term electrical load forecasting of a university campus: a case study[J]. Journal of Energy Resources Technology, 2013,135(3):032001-032018.
|
[11] |
Wang S, Wang X, Wang S, et al. Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting[J]. International Journal of Electrical Power & Energy Systems, 2019,109(2):470-479.
|
[12] |
Kong W, Dong Z Y, Jia Y, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2017,10(1):841-851.
|
[13] |
Jiao R, Zhang T, Jiang Y, et al. Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network[J]. IEEE Access, 2018(6):59438-59448.
|
[14] |
郭远晶, 魏燕定, 周晓军, 等. S变换时频谱SVD降噪的冲击特征提取方法[J]. 振动工程学报, 2014,27(4):621-628.
|
|
Guo Yuanjing, Wei Yanding, Zhou Xiaojun, et al. Impact feature extracting method based on S transform time-frequency spectrum denoised by SVD[J]. Journal of Vibration Engineering, 2014,27(4):621-628.
|
[15] |
池传国, 黄国勇, 孙磊. M估计的强跟踪SVD-UKF算法在组合导航中的应用[J]. 电子科技, 2018,31(7):42-45,54.
|
|
Chi Chuanguo, Huang Guoyong, Sun Lei. Application of strong tracking SVD-UKF algorithm based on m estimation in integrated navigation system[J]. Electronic Science and Technology, 2018,31(7):42-45,54.
|
[16] |
陶维青, 王乐勤, 顾芝瑕, 等. SVD和神经网络在孤岛检测中的应用[J]. 电力系统保护与控制, 2017,45(2):28-34.
|
|
Tao Weiqing, Wang Leqin, Gu Zhixia, et al. Application of SVD and neural network in islanding detection[J]. Power System Protection and Control, 2017,45(2):28-34.
|
[17] |
王天豪. 高校公共建筑能耗影响因素与预测模型构建研究[D]. 西安:西安建筑科技大学, 2018.
|
|
Wang Tianhao. Research on influencing factors and prediction model of public building energy consumption in colleges and universities[D]. Xi’an:Xi’an University of Architecture and Technology, 2018.
|
[18] |
苏凡军, 唐启桂. SBHCF:基于奇异值分解的混合协同过滤推荐算法[J]. 电子科技, 2016,29(1):44-47.
|
|
Su Fanjun, Tang Qigui. SBHCF:An SVD-based hybrid collaborative filtering recommendation algorithm[J]. Electronic Science and Technology, 2016,29(1):44-47.
|
[19] |
隋秀凛, 陈云壮, 葛江华, 等. 基于相关系数的时频矩阵SVD降噪方法[J]. 控制工程, 2018,25(10):1934-1939.
|
|
Sui Xiuling, Chen Yunzhuang, Ge Jianghua, et al. Time frequency matrix SVD de-noising method based on correlation coefficient[J]. Control Engineering of China, 2018,25(10):1934-1939.
|
[20] |
曾鸣, 杨宇, 郑近德, 等. μ-SVD降噪算法及其在齿轮故障诊断中的应用[J]. 机械工程学报, 2015,51(3):95-103.
|
|
Zeng Ming, Yang Yu, Zheng Jinde, et al. μ-SVD based denoising method and its application to gear fault diagnosis[J]. Journal of Mechanical Engineering, 2015,51(3):95-103.
|
[21] |
陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019,43(8):131-137.
|
|
Lu Jixiang, Zhang Qipei, Yang Zhihong, et al. Short-term load forecasting method based on CNN- LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019,43(8):131-137.
|
[22] |
代杰杰, 宋辉, 盛戈皞, 等. 采用LSTM网络的电力变压器运行状态预测方法研究[J]. 高电压技术, 2018,44(4):1099-1106.
|
|
Dai Jiejie, Song Hui, Sheng Gehao, et al. Prediction method for power transformer running state based on LSTM network[J]. High Voltage Engineering, 2018,44(4):1099-1106.
|
[23] |
魏昱洲, 许西宁. 基于LSTM长短期记忆网络的超短期风速预测[J]. 电子测量与仪器学报, 2019,33(2):64-71.
|
|
Wei Yuzhou, Xu Xining. Ultra-short-term wind speed prediction model using LSTM networks[J]. Journal of Electronic Measurement and Instrumentation, 2019,33(2):64-71.
|
[24] |
夏宇彬, 郑建立, 赵逸凡, 等. 基于深度学习的电子病历命名实体识别[J]. 电子科技, 2018,31(11):31-34,37.
|
|
Xia Yubin, Zheng Jianli, Zhao Yifan, et al. Deeplearning based named entity recognition of electronic medical record[J]. Electronic Science and Technology, 2018,31(11):31-34,37.
|