电子科技 ›› 2021, Vol. 34 ›› Issue (12): 36-41.doi: 10.16180/j.cnki.issn1007-7820.2021.12.007

• • 上一篇    下一篇

基于PSO-BP神经网络的风电功率备用容量估计模型

朱成名,魏云冰,蒋成成,朱健安   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2020-08-06 出版日期:2021-12-15 发布日期:2021-12-06
  • 作者简介:朱成名(1994-),男,硕士研究生。研究方向:电力调度新能源发电功率预测。|魏云冰(1970-),男,教授。研究方向:电力设备在线监测与故障诊断。
  • 基金资助:
    国家自然科学基金(51507157)

Estimation Model of Wind Power Reserve Capacity Based on PSO-BP Neural Network

ZHU Chengming,WEI Yunbing,JIANG Chengcheng,ZHU Jian'an   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2020-08-06 Online:2021-12-15 Published:2021-12-06
  • Supported by:
    National Natural Science Foundation of China(51507157)

摘要:

针对风电波动性和随机性对电网调度带来影响,文中提出一种基于神经网络的风力发电功率备用容量估计模型。该模型通过粒子群算法优化BP神经网络中各连接层之间的权值来提高对未来风力发电的功率值的预测,并利用皮尔逊相关系数提取与预测误差正相关的影响因素,再使用多元线性回归方法将提取的影响因素关联起来进行风电功率的备用容量的计算。文中通过公开的比利时风电场实际运行数据进行算例分析,仿真结果表明有80%的预测误差在该模型的估计区间内,进一步验证了该模型的有效性。

关键词: 风力发电, 风力发电功率, 神经网络, 粒子群优化算法, 预测误差, 皮尔逊相关系数, 多元线性回归, 备用容量

Abstract:

In view of the effect of the volatility and randomness of wind power on the dispatching of the power grid, a neural network-based wind power reserve capacity estimation model is proposed. In this model, the weights of each link layer in BP neural network are optimized by particle swarm optimization algorithm to improve the prediction of wind power value in the future. The Pearson correlation coefficient is used to extract the influence factors which are positively correlated with the prediction error, and then the multiple linear regression method is used to associate the extracted influencing factors to calculate the reserve capacity of wind power. The simulation results show that 80% of the prediction error is within the estimation range of the model, further verifying the effectiveness of the model.

Key words: wind power generation, wind power, neural network, particle swarm optimization algorithm, prediction error, Pearson correlation coefficient, multiple linear regression, reserve capacity

中图分类号: 

  • TP393