[1] |
杨志明, 李亚伟, 杨冰, 等. 融合宫颈细胞领域特征的多流卷积神经网络分类算法[J]. 计算机辅助设计与图形学学报, 2019, 31(4):531-540.
|
|
Yang Zhiming, Li Yawei, Yang Bing, et al. Multi flow convolution neural network classification algorithm based on the characteristics of cervical cell field[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(4):531-540.
|
[2] |
于月娜. 宫颈细胞图像分割和特征提取算法研究[D]. 湘潭:湘潭大学, 2019.
|
|
Yu Yuena. Research on segmentation and feature extraction algorithms cervical cell images[D]. Xiangtan:Xiangtan University, 2019.
|
[3] |
段鹏, 程文播, 钱庆, 等. 基于瓶颈检测和分水岭算法的重叠宫颈细胞图像分割方法[J]. 中国医疗器械杂志, 2020, 44(1):7-12.
|
|
Duan Peng, Cheng Wenbo, Qian Qing, et al. Overlapping cervical cell Image segmentation based on bottleneck detection and watershed algorithm[J]. Chinese Journal of Medical Instrumentation, 2020, 44(1):7-12.
|
[4] |
孟楚楚, 赵立宏. 结合梯度边缘信息改进的全局阈值法与GVF Snake模型的宫颈细胞图像分割[J]. 智能计算机与应用, 2019, 9(2):28-32.
|
|
Meng Chuchu, Zhao Lihong. Segmentation of cervical cell image using improved global thresholding method with gradient edge information and GVF Snake model[J]. Intelligent Computer and Applications, 2019, 9(2):28-32.
|
[5] |
Lassouaoui N, Hamami L. Genetic algorithms and multifractal segmentation of cervical cell images [C].Paris: The Seventh International Symposium on Signal Processing and Its Applications, 2003.
|
[6] |
李智能, 刘任任, 梁光明. 基于卷积神经网络的医学宫颈细胞图像的语义分割[J]. 计算机应用与软件, 2019, 36(11):152-156.
|
|
Li Zhineng, Liu Renren, Liang Guangming. Semantic segmentation of medical cervical cell images based on convolutional neural network[J]. Computer Applications and Software, 2019, 36(11):152-156.
|
[7] |
Richmond D L, Kainmueller D, Yang M Y, et al. Relating cascaded random forests to deep convolutional neural networks for semantic segmentation[J]. Computer Science, 2015, 36(12):233-245.
|
[8] |
Micha J, Rgen K, Li P H, et al. High-precision automated reconstruction of neurons with flood-filling networks[J]. Nature Methods, 2018, 15(18):605-610.
doi: 10.1038/s41592-018-0049-4
|
[9] |
Wei Y, Liang X, Chen Y, et al. Stc:a simple to complex framework for weakly-supervised semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(11):2314-2320.
doi: 10.1109/TPAMI.2016.2636150
|
[10] |
Jiao L, Huo L, Hu C, et al. Refined UNet V2: end-to-end patch-wise network for noise-free cloud and shadow segmentation[J]. Remote Sensing, 2020, 12(21):3530-3566.
doi: 10.3390/rs12213530
|
[11] |
Qi C R, Su H, Mo K, et al. Pointnet:deep learning on point sets for 3D classification and segmentation [C].Honolulu:IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[12] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
|
[13] |
Zheng S, Jayasumana S, Romera-Paredes B, et al. Conditional random felds as recurrent neural network [C]. Santiago:Proceedings of the IEEE International Conference on Computer Vision, 2015.
|
[14] |
Wang Y J, Hu S Y, Wang G D, et al. Multi-scale dilated convolution of convolutional neural network for crowd counting[J]. Multimedia Tools and Applications, 2020, 79(5):1057-1073.
doi: 10.1007/s11042-019-08208-6
|
[15] |
Pinheiro P O, Lin T Y, Collobert R, et al. Learning to refine object segments [C].Amsterdam:European Conference on Computer Vision, 2016.
|
[16] |
Prasad R, Chang X J, Cloudhury S, et al. Multi-stage cascaded deconvolution for depth map and surface normal prediction from single image[J]. Pattern Recognition Letters, 2019, 27(16):165-173.
|
[17] |
Ahron M, Elad M, Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processingm, 2006, 54(11):4311-4322.
|
[18] |
刘仪. 基于卷积神经网络的低分辨率细胞图像分割算法研究[D]. 西安:西安理工大学, 2019.
|
|
Liu Yi. Research on low resolution cell images segmentation based on convolution neural networks[D]. Xi'an:Xi'an University of Technology, 2019.
|
[19] |
Kothari S C, Prabhu G M, Roberts R. A multipath network with cross links[J]. Journal of Parallel & Distributed Computing, 1988, 5(2):185-193.
|
[20] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683
|
[21] |
Badrinarayanan V, Kendall A, Cipolla R. Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
|
[22] |
Zhou Z W, Siddiquee M M R, Tajbakhsh N, et al. UNet++:redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 39(6):1856-1867.
doi: 10.1109/TMI.42
|
[23] |
Wei R, Liu B, Zhou F G. A patient-independent CT intensity matching method using conditional Generative Adversarial Networks (cGAN) for single X-ray projection based tumor localization[J]. Physics in Medicine & Biology, 2020,65(14):145009(1-16).
|
[24] |
陆超文, 李菲菲, 陈虬. 基于改进哈希算法的图像检索方法[J]. 电子科技, 2020, 33(5):28-32.
|
|
Lu Chaowen, Li Feifei, Chen Qiu. An image retrieval algorithm based on improved hashing method[J]. Electronic Science and Technology, 2020, 33(5):28-32.
|
[25] |
严茂声, 陈家琪. 一种多环境适用的交通标志识别模型[J]. 电子科技, 2019, 32(4):71-76.
|
|
Yan Maosheng, Chen Jiaqi. A multi-environmental traffic sign recognition model[J]. Electronic Science and Technology, 2019, 32(4):71-76.
|