电子科技 ›› 2021, Vol. 34 ›› Issue (12): 68-74.doi: 10.16180/j.cnki.issn1007-7820.2021.12.012

• • 上一篇    下一篇

基于弱监督宫颈细胞图像的语义分割方法

张灿,陈玮,尹钟   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2020-08-09 出版日期:2021-12-15 发布日期:2021-12-06
  • 作者简介:张灿(1995-),女,硕士研究生。研究方向:计算机视觉。|陈玮(1964-),女,副教授。研究方向:模式识别与图像处理。|尹钟(1988-),男,副教授。研究方向:基于脑电信号的深度学习。
  • 基金资助:
    国家自然科学基金(61703277)

Semantic Segmentation of Cervical Cell Image Based on Weak Supervision

ZHANG Can,CHEN Wei,YIN Zhong   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology, Shanghai 200093,China
  • Received:2020-08-09 Online:2021-12-15 Published:2021-12-06
  • Supported by:
    National Natural Science Foundation of China(61703277)

摘要:

基于弱监督标签的神经网络算法是医学领域的研究热点之一。针对医学领域缺少标签数据以及细胞质、细胞核分割不精确的问题,文中提出一种基于弱监督宫颈细胞图像的语义分割算法。该算法首先用无监督K-means作为标注函数生成细胞图像分割标签。然后,通过改进的Encoder-Decoder网络进行训练。文中引入CRF作为网络的最后一层以整合图片全局信息,优化分割结果。将标签及预测图像分3次进行优化训练以达到对细胞图像的像素级分类。在宫颈细胞图片数据集上对文中所提算法进行验证,实验结果表明,该算法具有良好的泛化能力,准确率高达96.7%。

关键词: 弱监督, K-means, 语义分割, 卷积神经网络, 宫颈细胞, Encoder-Decoder, CRF, 优化训练

Abstract:

Neural network algorithm based on weakly supervised label is a hot research topic in medical field. In view of the lack of labeling data and the inaccurate segmentation of cytoplasm and nucleus, this study proposes a semantic segmentation algorithm based on weakly supervised cervical cell images. First, the algorithm uses unsupervised K-means as the labeling function to generate cell image segmentation labels. Then, training is conducted through an improved Encoder-Decoder network. Subsequently, CRF is introduced as the last layer of the network to integrate the global information of the image and optimize the segmentation results. The label and prediction images are optimized and trained in three times to achieve pixel level classification of cell images. Finally, the algorithm is verified using the cervical cell image dataset. The experimental results show that the algorithm has high generalization ability, and the accuracy rate is up to 96.7%.

Key words: weak supervision, K-means, semantic segmentation, convolutional neural network, cervical cell, Encoder-Decoder, CRF, optimization training

中图分类号: 

  • TP391