[1] |
杨福胜, 张早校, 王斯民, 等. 粒子追踪测速(PTV)技术及其在多相流测试中的应用[J]. 流体机械, 2014, 42(2):37-42.
|
|
Yang Fusheng, Zhang Zaoxiao, Wang Simin, et al. Particle tracking velocimetry and its application to the measurement of multiphase flow-a review[J]. Fluid Machinery, 2014, 42(2):37-42.
|
[2] |
王成军, 江平, 辛欣, 等. 基于PIV技术对三级旋流杯燃烧室流场的测量[J]. 航空动力学报, 2015, 30(5):1032-1039.
|
|
Wang Chengjun, Jiang Ping, Xin Xin, et al. Measurement of triple-stage swirler cup combustor flow field based on PIV technology[J]. Journal of Aerospace Power, 2015, 30(5):1032-1039.
|
[3] |
Wu Y, Chen Z, Hu L, et al. Identification of safety gas for fusion demonstration reactor[J]. Nature Energy, 2016, 1(12):1-11.
|
[4] |
栾昆鹏, 叶景峰, 王晟, 等. 基于粒子图像测速的XeF(C-A)气体激光器增益区流场测量[J]. 中国激光, 2019, 46(2):132-138.
|
|
Luan Kunpeng, Ye Jingfeng, Wang Sheng, et al. Flow field measurements in gain zone of XeF(C-A)gas laser based on particle image velocimetry[J]. Chinese Journal of Lasers, 2019, 46(2):132-138.
|
[5] |
Qu X J, Song Y, Jin Y, et al. 3D SAPIV particle field reconstruction method based on adaptive threshold[J]. Applied Optics, 2018, 57(7):1622-1633.
doi: 10.1364/AO.57.001622
|
[6] |
Cozzi F, Coghe A, Sharma R. Analysis of local entrainment rate in the initial region of isothermal free swirling jets by stereo PIV[J]. Experimental Thermal and Fluid Science, 2018, 94(1):281-294.
doi: 10.1016/j.expthermflusci.2018.01.013
|
[7] |
Im S, Kim H T, Rhee B W, et al. PIV measurements of the flow patterns in a CANDU-6 model[J]. Annals of Nuclear Energy, 2016, 98(2):1-11.
doi: 10.1016/j.anucene.2016.07.012
|
[8] |
Takeda Y. Velocity profile measurement by ultrasound Doppler shift method[J]. International Journal of Heat and Fluid Flow, 1986, 7(4):313-318.
doi: 10.1016/0142-727X(86)90011-1
|
[9] |
刘建书, 李人厚, 常宏. 基于相关性函数和最小二乘的多传感器数据融合[J]. 控制与决策, 2006, 21(6):714-720.
|
|
Liu Jianshu, Li Renhou, Chang Hong. Multi-sensor data fusion based on correlation function and least square[J]. Control and Decision, 2016, 21(6):714-720.
|
[10] |
刘春, 马颖. 改进卡尔曼滤波在北斗伪距定位中的研究[J]. 电子测量与仪器学报, 2016, 30(5):779-785.
|
|
Liu Chun, Ma Ying. Research on improved Kalman filter in Beidou pseudo ranges positioning[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(5):779-785.
|
[11] |
卢治功, 贺鹏, 职连杰, 等. 基于最小二乘法多项式拟合三角测量模型研究[J]. 应用光学, 2019, 40(5):853-858.
doi: 10.5768/JAO201940.0503003
|
|
Lu Zhigong, He Peng, Zhi Lianjie, et al. Laser triangulation measurement model based on least square[J]. Journal of Applied Optics, 2019, 40(5):853-858.
doi: 10.5768/JAO201940.0503003
|
[12] |
周旋, 师蔚. 低功耗高精度温度多路采集测温系统研究[J]. 电子科技, 2020, 33(8):46-52.
|
|
Zhou Xuan, Shi Wei. Research on low power and high precision temperature multichannel acquisition technology[J]. Electronic Science and Technology, 2020, 33(8):46-52.
|
[13] |
张毅, 张宝芬, 曹丽, 等. 自动检测技术及仪表控制系统. [M]. 2版.北京: 化学工业出版社, 2004.
|
|
Zhang Yi, Zhang Baofen, Cao Li, et al. Automatic detection technology and instrument control system [M].2nd ed. Beijing: Chemical Industry Press, 2004.
|
[14] |
费业泰. 误差理论与数据处理[M]. 6版.北京: 机械工业出版社, 2010.
|
|
Fei Yetai. Error theory and data processing[M].6th ed. Beijing: Machinery Industry Press, 2010.
|
[15] |
黎蓉. 卡尔曼滤波在组合导航数据处理中的应用[J]. 电子测量技术, 2017, 40(3):158-162.
|
|
Li Rong. Study on the application of Kalman filtering in the integrated navigation[J]. Electronic Measurement Technology, 2017, 40(3):158-162.
|
[16] |
乐燕芬, 罗红玉, 赵妍, 等. 基于位置指纹的室内移动目标定位系统[J]. 电子科技, 2018, 31(11):42-46.
|
|
Le Yanfen, Luo Hongyu, Zhao Yan, et al. Indoor positioning system based on fingerprint with enhancing accuracy[J]. Electronic Science and Technology, 2018, 31(11):42-46.
|
[17] |
崔永林, 席燕辉, 张小东. 基于自适应卡尔曼滤波残差分析的谐波检测[J]. 电力系统保护与控制, 2019, 47(24):92-100.
|
|
Cui Yonglin, Xi Yanhui, Zhang Xiaodong. Detection of harmonic based on residual analysis using adaptive Kalman filter[J]. Power System Protection and Control, 2019, 47(24):92-100.
|
[18] |
李伟, 刘伟嵬, 邓业林. 基于扩展卡尔曼滤波的锂离子电池荷电状态估计[J]. 中国机械工程, 2020, 31(3):321-327.
|
|
Li Wei, Liu Weiwei, Deng Yelin. SOC eEstimation for lithium-ion batteries based on EKF[J]. China Mechanical Engneering, 2020, 31(3):321-327.
|