电子科技 ›› 2021, Vol. 34 ›› Issue (4): 75-82.doi: 10.16180/j.cnki.issn1007-7820.2021.04.012

• • 上一篇    下一篇

基于一维WConv-BiLSTM的轴承故障诊断算法

闫书豪1,乔美英1,2   

  1. 1. 河南理工大学 电气工程与自动化学院,河南 焦作 454000
    2. 煤炭安全生产河南省协同创新中心,河南 焦作 454000
  • 收稿日期:2019-12-19 出版日期:2021-04-15 发布日期:2021-04-16
  • 作者简介:闫书豪(1994-),男,硕士研究生。研究方向:机器学习、深度学习以及数据处理。|乔美英(1976-),女,博士,副教授。研究方向:机器学习、时间序列预测、故障诊断等。
  • 基金资助:
    国家自然科学基金(61573129);中国-河南省自然科学基金(172102310239)

Bearing Fault Diagnosis Algorithm Based on One-Dimensional WConv-BiLSTM

YAN Shuhao1,QIAO Meiying1,2   

  1. 1. School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China
    2. Collaborative Innovation Center of Coal Work Safety,Jiaozuo 454000,China
  • Received:2019-12-19 Online:2021-04-15 Published:2021-04-16
  • Supported by:
    National Natural Science Foundation of China(61573129);Natural Science Foundation of China-Henan(172102310239)

摘要:

针对不同信噪比噪声干扰下的轴承故障诊断问题,文中建立了一种基于一维宽卷积核卷积神经网络和双向长短记忆神经网络的轴承故障诊断模型。向该模型输入轴承振动信号,通过短时傅里叶变换将振动信号转化为时频图。然后利用首层为宽卷积核的卷积神经网络和长短记忆神经网络分别提取其空间与时间特征,并结合全连接层实现分类。为增强抗噪性,模型采用数据增强、mini-batch和批量标准化的方法。试验采用CWRU的轴承故障数据集,通过添加不同信噪比噪声构造噪声干扰试验。试验表明该模型有较好的抗噪性,在信噪比为2 dB的噪声干扰下仍能取得98%以上的故障识别准确率。

关键词: 轴承故障诊断, 卷积神经网络, 宽卷积核, 双向长短记忆神经网络, 短时傅里叶变换, 抗噪性

Abstract:

In view of bearing fault diagnosis under different signal-to-noise ratio noise interference, a bearing fault diagnosis model based on one-dimensional wide convolution kernel convolutional neural network and bidirectional long short-term memory neural network is established. The bearing vibration signals are used as input to the proposed model, and the short-time Fourier transform is used to transform the vibration signal into the time-frequency figures. Convolutional neural networks with wide convolution kernels and bidirectional long short-term memory neural networks are applied to extract the spatial and temporal characteristics of data, and classification is achieved through dense layers. Data augmentation, mini-batch, and batch normalization methods are utilized to enhance the anti-noise performance of the model. The test uses the CWRU bearing fault data set, and adds noise with different SNR to construct noise interference tests. The experiments show that proposed model has great noise resistance, and can achieve 98% accuracy of fault recognition with a signal-to-noise ratio of 2 dB.

Key words: bearing fault diagnosis, CNN, wide convolution kernels, BiLSTM, short-time Fourier transform, noise immunity

中图分类号: 

  • TP389.1