电子科技 ›› 2021, Vol. 34 ›› Issue (5): 29-34.doi: 10.16180/j.cnki.issn1007-7820.2021.05.006

• • 上一篇    下一篇

基于多特征融合的行人检测方法

顾伟,李菲菲,陈虬   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 出版日期:2021-05-15 发布日期:2021-05-24
  • 作者简介:顾伟(1995-),男,硕士研究生。研究方向:计算机视觉与模式识别。|李菲菲(1970-),女,博士,教授。研究方向:多媒体信息处理、图像处理与模式识别、信息检索等。|陈虬(1972-),男,博士,教授,博士生导师。研究方向:图像处理与模式识别、计算机视觉、信息检索等。
  • 基金资助:
    上海市高校特聘教授(东方学者)岗位计划(ES2015XX)

Pedestrian Detection Algorithm Based on Multiple Feature Fusion

GU Wei,LI Feifei,CHEN Qiu   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Online:2021-05-15 Published:2021-05-24
  • Supported by:
    The Program for Professor of Special Appointment(Eastern Scholar) at Shanghai Institutions of Higher Learning(ES2015XX)

摘要:

作为一个典型的目标检测问题,行人检测问题已成为近年来的研究热点。行人检测技术虽被广泛应用于智能交通、自动驾驶、视频监控以及行为分析等领域,但仍存在着需要解决的问题。文中在多特征融合的基础上提出了一个多通道特征模型,多通道特征模型由非深度学习分支、整体分支以及肢体分支组成。文中通过非深度学习分支提取出数量少、质量高的行人候选区域,减轻了滑动窗口穷举搜索带来的计算负担,提高了计算效率。该方法由多层卷积通道特征得到的整体分支以及肢体分支,分别通过人体整体信息和人体部位的语义信息来检测行人;使用多通道特征模型分别在Caltech行人数据集和INRIA行人数据集中进行训练和检测。实验结果表明,结合各分支的输出,文中提出的行人检测器具有较低的漏检率,在INRIA行人数据集和Caltech行人数据集中漏检率分别为8.24%和19.78%

关键词: 行人检测, 卷积神经网络, 多通道特征, 多层卷积通道特征, 局部去相关通道特征, 方向梯度直方图

Abstract:

As a typical problem of object detection, pedestrian detection has been an active research topic in recent years. Pedestrian detection is widely used in intelligent transportation, autonomous driving, video surveillance, behavior analysis and other fields, but there are many problems to be solved. In this study, a multi-channel feature model based on multiple feature fusion which consists of a non-deep learning branch, a body branch and a limb branch is proposed. A small number of high-quality pedestrian candidate areas are extracted through the non-deep learning branch, thus reducing the computational cost cause by exhaustive search by sliding window and improving the computational efficiency. The body branch and limb branch obtained from the feature of multi-layer convolutional channel are applied to detect pedestrians through the overall human body information and the semantic information of human body parts, respectively. Caltech pedestrian dataset and INRIA pedestrian dataset are adopted to train and test the proposed model. Experimental results show that combine with the output of each branch, the proposed pedestrian detector have a lower miss rate. The miss rates on INRIA pedestrian dataset and Caltech pedestrian dataset are 8.24% and 19.78%, respectively.

Key words: pedestrian detection, convolutional neural network, multi-channel feature, multi-layer convolution channel feature, locally decorrelated channel features, histogram of oriented gradient

中图分类号: 

  • TP391.41