[1] |
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]. San Diego:IEEE International Conference on Computer Vision and Pattern Recognition, 2005.
|
[2] |
Papageorgiou C, Poggio T. A trainable system for object detection[J]. International Journal of Computer Vision, 2000,38(1):15-33.
doi: 10.1023/A:1008162616689
|
[3] |
Sabzmeydani P, Mori G. Detecting pedestrians by learning shapelet features[C]. Minneapolis:IEEE International Conference on Computer Vision and Pattern Recognition, 2007.
|
[4] |
Ojala T, Harwood I. A comparative study of texture measures with classification based on feature distributions[J]. Pattern Recognition, 1996,29(1):51-59.
doi: 10.1016/0031-3203(95)00067-4
|
[5] |
Walk S, Majer N, Schindler K, et al. New features and insights for pedestrian detection[C]. San Francisco: International Conference on Computer Vision and Pattern Recognition, 2010.
|
[6] |
Doll'ar P, Tu Z, Perona P, et al. Integral channel features[C]. London:British Machine Vision Conference, 2009.
|
[7] |
Felzenszwalb P F, Girshick R B, Mcallester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Software Engineering, 2010,32(9):1627-1645.
|
[8] |
Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010,19(6):1635-1650.
doi: 10.1109/TIP.2010.2042645
|
[9] |
Feigang T. SLBP:an improved texture feature for pedestrian detection[C]. Changsha:International Conference on Smart City and Systems Engineering, 2017.
|
[10] |
Dollar P, Appel R, Belongie S, et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36(8):1532-1545.
doi: 10.1109/TPAMI.2014.2300479
|
[11] |
Nam W, Dollar P, Han J H. Local decorrelation for improved pedestrian detection[C]. Montreal:Neural Information Processing Systems, 2014.
|
[12] |
Zhang S, Benenson R, Schiele B. Filtered channel features for pedestrian detection[C]. Boston:International Conference on Computer Vision and Pattern Recognition, 2015.
|
[13] |
Li H, Wu Z, Zhang J. Pedestrian detection based on deep learning model[C]. Shanghai:IEEE International Congress on Image & Signal Processing, 2017.
|
[14] |
Hu Q, Wang P, Shen C, et al. Pushing the limits of deep CNNs for pedestrian detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018,28(6):1358-1368.
doi: 10.1109/TCSVT.2017.2648850
|
[15] |
Ribeiro D, Nascimento J C, Bernardino A, et al. Improving the performance of pedestrian detectors using convolutional learning[J]. Pattern Recognition, 2016,61(1):641-649.
doi: 10.1016/j.patcog.2016.05.027
|
[16] |
Bui H M, Lech M, Cheng E, et al. Object recognition using deep convolutional features transformed by a recursive network structure[J]. IEEE Access, 2016,4(1):10059-10066.
doi: 10.1109/ACCESS.2016.2639543
|
[17] |
Lecun Y L, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
doi: 10.1109/5.726791
|
[18] |
Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012,25(2):1-9.
|
[19] |
Hosang J, Omran M, Benenson R, et al. Taking a deeper look at pedestrians[C]. Boston:International Conference on Computer Vision and Pattern Recognition, 2015.
|
[20] |
Zitnick C L, Dollar P. Edge Boxes:locating object proposals from edges[C]. Zurich:The Thirteenth European Conference on Computer Vision, 2014.
|
[21] |
Ren S, He K, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
|
[22] |
Yang B, Yan J, Lei Z, et al. Convolutional channel features[C]. Santiago:IEEE International Conference on Computer Vision, 2015.
|
[23] |
Hochreiter S, Schmidhuber, Jürgen. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
pmid: 9377276
|
[24] |
Viola P, Jones M J, Snow D. Detecting pedestrians using patterns of motion and appearance[J]. International Journal of Computer Vision, 2005,63(2):153-161.
doi: 10.1007/s11263-005-6644-8
|
[25] |
Paisitkriangkrai S, Shen C, Hengel A V D. Strengthening the effectiveness of pedestrian detection with spatially pooled features[C]. Zurich:The Thirteenth European Conference on Computer Vision, 2014.
|
[26] |
Wu F C, Wang Z H, Yang Y. Exploring prior knowledge for pedestrian detection[C]. Swansea:British Machine Vision Conference, 2015.
|
[27] |
巨志勇, 黄凯. 基于共生概率特征量的行人检测[J]. 电子科技, 2015,28(11):139-142.
|
|
Ju Zhiyong, Huang Kai. Pedestrian detection based on symbiosis probability feature[J]. Electronic Science and Technology, 2015,28(11):139-142.
|