电子科技 ›› 2022, Vol. 35 ›› Issue (6): 1-5.doi: 10.16180/j.cnki.issn1007-7820.2022.06.001

• •    下一篇

一种基于模板匹配与隶属度解析的时序异常快速检测方法

龚汉鑫,齐金鹏,孔凡书,朱俊俊,曹一彤   

  1. 东华大学 信息科学与技术学院,上海 201620
  • 收稿日期:2021-01-28 出版日期:2022-06-15 发布日期:2022-06-20
  • 作者简介:龚汉鑫(1995-),男,硕士研究生。研究方向:异常突变点检测。|齐金鹏(1977-),男,博士,副教授。研究方向:大数据异常检测、图像处理。
  • 基金资助:
    国家自然科学基金(61104154);上海市自然科学基金(16ZR1401300);上海市自然科学基金(16ZR1401200)

A Fast Time Series Anomaly Detection Method Based on Template Matching and Membership Analysis

GONG Hanxin,QI Jinpeng,KONG Fanshu,ZHU Junjun,CAO Yitong   

  1. School of Information Science and Technology,Donghua University,Shanghai 201620,China
  • Received:2021-01-28 Online:2022-06-15 Published:2022-06-20
  • Supported by:
    National Natural Science Foundation of China(61104154);Natural Science Foundation of Shanghai(16ZR1401300);Natural Science Foundation of Shanghai(16ZR1401200)

摘要:

传统的数据检测技术在处理大规模医疗数据时,耗时较高且抗干扰能力较弱。针对这些问题,文中应用模板匹配与隶属度解析技术,给出了一种时序数据异常状态的快速检测与分析方法。该方法采用TSTKS算法与滑动窗口理论实现时序数据多突变点快速检测,提取连续多窗口波动特征,构建时序数据的归一化波动向量,对大规模病变信号进行异常状态检测与分析。仿真数据与脑电病变信号分析等实验表明,此方法是一种较为快速、准确的大数据分析与检测方法。

关键词: 突变点检测, 大数据分析, 异常检测, 滑动窗口, 时序数据, 波动向量, 模板匹配, 隶属度分析

Abstract:

Traditional data analysis techniques have some problems in processing large-scale medical data detection, such as high time consumption and weak anti-jamming ability. In order to solve these problems, this study presents a fast detection and analysis method for abnormal state of time series data which uses template matching and membership degree analysis techniques. This method uses TSTKS algorithm and sliding window theory to realize rapid detection of multiple mutation points in time series data, extract continuous multi-window fluctuation characteristics, construct a normalized fluctuation vector of time series data, and perform abnormal state detection and analysis on large-scale disease signals. Simulation data and EEG signal analysis show that this method is a relatively fast and accurate method for big data analysis and detection.

Key words: mutation point detection, big data analytics, anomaly detection, sliding window, time series, fluctuating vector, template matching, membership analysis

中图分类号: 

  • TP311