[1] |
杨帆, 王干军, 彭小圣, 等. 基于卷积神经网络的高压电缆局部放电模式识别[J]. 电力自动化设备, 2018, 38(5):123-128.
|
|
Yang Fan, Wang Ganjun, Peng Xiaosheng, et al. Partial discharge pattern recognition of high voltage cable based on convolutional neural network[J]. Electric Power Automation Equipment, 2018, 38(5):123-128.
|
[2] |
Yang F, Xu Y, Qian Y, et al. Application of correlation analysis techniques in feature extraction and selection for DC partial discharge signals of XLPE cables[J]. Power System Technology, 2018, 42(5):1653-1660.
|
[3] |
Peng X, Li J, Wang G, et al. Random forest based optimal feature selection for partial discharge pattern recognition in HV cables[J]. IEEE Transactions on Power Delivery, 2019, 34(4):1715-1724.
doi: 10.1109/TPWRD.2019.2918316
|
[4] |
李程, 李强, 张启超, 等. 基于支持向量机递归特征消除的电缆局部放电特征寻优[J]. 电气技术, 2020, 21(1):67-71.
|
|
Li Cheng, Li Qiang, Zhang Qichao, et al. Partial discharge characteristic optimization of cables based on support vector machine-recursive feature elimination[J]. Electrical Engineering, 2020, 21(1):67 -71.
|
[5] |
Li L, Tang J, Liu Y. Partial discharge recognition in gas insulated switchgear based on multi-information fusion[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 22(2):1080-1087.
doi: 10.1109/TDEI.2015.7076809
|
[6] |
毛振宇, 李方利, 叶玉明, 等. 基于BP神经网络算法的电缆局部放电类型模式识别[J]. 机电信息, 2019, 27(10):20-22.
|
|
Mao Zhenyu, Li Fangli, Ye Yuming, et al. Partial discharge pattern recognition of cable based on BP neural network algorithm[J]. Mechanical and Electrical Information, 2019, 27(10):20-22.
|
[7] |
刘兵, 郑剑. 基于卷积神经网络的变压器局部放电模式识别[J]. 高压电器, 2017, 53(5):70-74.
|
|
Liu Bing, Zheng Jian. Partial discharge pattern recognition in power transformers based on convolutional neural network[J]. High Voltage Apparatus, 2017, 53(5):70-74.
|
[8] |
Song H, Dai J, Sheng G,et.al. GIS partial discharge pattern recognition via deep convolutional neural network under complex data source[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(2):678-685.
doi: 10.1109/TDEI.2018.006930
|
[9] |
Li G, Wang X, Li X, et al. Partial discharge recognition with a multi-resolution convolutional neural network[J]. Sensors, 2018, 18(10):1-10.
doi: 10.3390/s18010001
|
[10] |
Liu F, Shen C, Lin G, et al. Learning depth from single monocular images using deep convolutional neural fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10):2024-2039.
doi: 10.1109/TPAMI.2015.2505283
|
[11] |
葛靖, 刘子龙. 基于CNN和LSTM的睡眠呼吸暂停检测算法[J]. 电子科技, 2021, 34(2):21-26.
|
|
Ge Jing, Liu Zilong. The algorithm based on CNN and LSTM for sleep apnea syndrome detection[J]. Electronic Science and Technology, 2021, 34(2):21-26.
|
[12] |
马波, 蔡伟东, 赵大力. 基于GAN样本生成技术的智能诊断方法[J]. 振动与冲击, 2020, 39(18):153-160.
|
|
Ma Bo, Cai Weidong,Zhao Dali.Intelligent diagnosis method based on GAN sample generation technology[J]. Journal of Vibration and Shock, 2020, 39(18):153-160.
|
[13] |
孙秋野, 胡旌伟, 杨凌霄, 等. 基于GAN技术的自能源混合建模与参数辨识方法[J]. 自动化学报, 2018, 44(5):901-914.
|
|
Sun Qiuye, Hu Jingwei, Yang Lingxiao, et al. We-energy hybrid modeling and parameter identification with GAN technology[J]. Acta Automatica Sinica, 2018, 44(5):901-914.
|
[14] |
谈元鹏, 刘伟, 赵紫璇, 等. 面向配电异构数据的生成对抗式数据增殖技术研究[J]. 供用电, 2019, 36(10):36-40.
|
|
Tan Yuanpeng, Liu Wei, Zhao Zixuan, et al. Generative adversarial learning based date generation technology for distribution heterogeneous data[J]. Distribution & Utilization, 2019, 36(10):36-40.
|
[15] |
Zhang A, He J, Lin Y, et al. Recognition of partial discharge of cable accessories based on convolutional neural network with small data set[J]. COMPEL-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2020, 39(2):431-446.
doi: 10.1108/COMPEL-08-2019-0317
|
[16] |
Bae S H, Yoon K J. Confidence-based data association and discriminative deep appearance learning for robust online multi-object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3):595-610.
doi: 10.1109/TPAMI.2017.2691769
|
[17] |
Dong C, Loy C C, He K. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(2):295-307.
|
[18] |
Chong U P. Signal model-based fault detection and diagnosis for induction motors using features of vibration signal in Two-Dimension domain[J]. Strojniski Vestnik, 2011, 57(9):655-666.
|
[19] |
曹思灿. 基于生成对抗网络的轴承故障诊断方法研究[D]. 武汉: 华中科技大学, 2019.
|
|
Cao Sican. Generative adversarial network based methods for rolling bearing fault diagnosis[D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
[20] |
曾钰廷. 基于深度学习的物体检测与跟踪方法的研究[D]. 南昌: 东华理工大学, 2018.
|
|
Zeng Yuting. Object detection and tracking based on the deep learning[D]. Nanchang: East China University of Technology, 2018.
|
[21] |
Peng X, Yang F, Wang G, et al. A convolutional neural network-based deep learning methodology for recognition of partial discharge patterns from high-voltage cables[J]. IEEE Transactions on Power Delivery, 2019, 34(4):1460-1469.
doi: 10.1109/TPWRD.2019.2906086
|