›› 2015, Vol. 28 ›› Issue (6): 118-.
钱莉,姚恒,刘牮
QIAN Li,YAO Heng,LIU Jian
摘要:
对故障电路进行特征提取与分类是模拟电路诊断的两个重要环节。现有方法多对时域响应信号进行小波变换以提取故障特征,并用神经网络或支持向量机方法实现对故障进行分类。为提高模拟电路故障诊断率,提出一种新的特征选取方法:在模拟电路的时域响应中对其进行小波变换,并对变换得到的高频细节系数统计平均值、标准偏差、峭度、熵和偏斜度等统计特征,并建立以支持向量机为分类器的故障诊断系统。以两种常见电路为例,实验结果表明,提出方法对常见电路进行故障诊断,准确率得到提升,精度达到99%以上,优于传统单纯小波系数分析方法,适用于模拟电路的故障诊断。
中图分类号: