›› 2016, Vol. 29 ›› Issue (1): 124-.

• 论文 • 上一篇    下一篇

基于改进型稀疏自动编码器的图像识别

尹征,唐春晖,张轩雄   

  1. (上海理工大学 光电信息与计算机工程学院,上海 200093)
  • 出版日期:2016-01-15 发布日期:2016-02-25
  • 作者简介:尹征(1989—),男,硕士研究生。研究方向:计算机视觉等。唐春晖(1971—),男,讲师。研究方向:数字图像处理等。张轩雄(1965—),男,教授。研究方向:微电子机械系统等。

Image Recognition Based on Improved Sparse Auto-encoder

YIN Zheng,TANG Chunhui,ZHANG Xuanxiong   

  1. (School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
  • Online:2016-01-15 Published:2016-02-25

摘要:

传统的稀疏自动编码器不具备平移不变性,同时对非高斯噪声较为敏感。为增加网络平移不变的特性,借鉴卷积神经网络的相关理论,通过对原始的像素块进行卷积运算以达到上述目的;而为了提高对非高斯噪声的鲁棒性,自动编码器的代价函数由均方误差改为了最大相关熵准则。通过在MNIST和CIFAR-10数据集上进行试验,结果证明,改进后的方法较传统的自动编码器具有更好地识别效果,识别率提高了2%~6%。

关键词: 深度学习, 自动编码器, 卷积神经网络, 最大相关熵

Abstract:

The traditional sparse auto-encoder lacks invariant translation and is sensitive to non-Gauss noise.A method convolving the original pixel block is proposed to increase the network invariance with the mean square error (MSE) replaced by the maximum correntropy criterion (MCC) in cost function to improve the anti-noise ability.The proposed method is evaluated using the MINIST and CIFAR-10 datasets.Experimental results show that the proposed approach improves the recognition rate by 2% in the condition of non-noise and by 6% in the noise condition.

Key words: deep learning;auto encoder;convolutional neural network;maximum correntropy criterion

中图分类号: 

  • TN762