电子科技 ›› 2019, Vol. 32 ›› Issue (4): 16-20.doi: 10.16180/j.cnki.issn1007-7820.2019.04.004

• • 上一篇    下一篇

自适应谱减声发射消噪及轴承故障诊断

朱望纯,程浩,高海英   

  1. 桂林电子科技大学 电子工程与自动化学院,广西 桂林 541004
  • 收稿日期:2018-03-18 出版日期:2019-04-15 发布日期:2019-03-27
  • 作者简介:朱望纯(1976-),男,研究员。研究方向:自动测试系统及软件。|程浩(1991-),男,硕士研究生。研究方向:机械故障诊断。|高海英(1980-),女,讲师。研究方向:自动测试系统及软件。
  • 基金资助:
    桂林电子科技大学研究生教育创新计划(2017YJCX104)

Adaptive Acoustic Emission Noise Elimination and Bearing Fault Diagnosis

ZHU Wangchun,CHENG Hao,GAO Haiying   

  1. School of Electrical Engineering and Automation, Guilin University of Electronic Science and Technology, Guilin 541004, China
  • Received:2018-03-18 Online:2019-04-15 Published:2019-03-27
  • Supported by:
    Guilin University of Electronic Science and Technology Postgraduate Education Innovation Program Support Project(2017YJCX104)

摘要:

对轴承进行声发射信号分析时,环境噪声会使信号能量波动,从而导致后期故障诊断失误。引入谱减法可以对声发射信号进行预先消噪,增强声信号的稳定性。但是谱减法对非平稳信号的处理性能不足,需对其进行谱减系数修正,并利用遗传算法对谱减系数(m,λ)全局优化。实验结果表明,自适应谱减法能够得到更优质的谱减系数,并有效的消除相对小波包能量的异常波动。各种故障类型的能量特征经支持向量机训练后,准确率均能达到92%左右。

关键词: 故障诊断, 声发射, 谱减法, 遗传算法, 小波包变换, 支持向量机

Abstract:

When acoustic emission signals are analyzed for bearings, environmental noise causes signal energy to fluctuate, resulting in misdiagnosis of late failures. To solve the problem, a spectral subtraction method was introduced to pre-noise the acoustic emission signal to enhance the stability of signal. In view of the lack of processing performance of spectral subtraction for non-stationary signals, spectral subtraction coefficients were modified and genetic algorithm was used to optimize the spectral subtraction coefficients(m, λ) globally. Experiment showed that the adaptive spectral subtraction method could obtain better spectral subtraction coefficients, and the fluctuation of wavelet packet energy feature could be eliminated. After the SVM training for the energy features of various bearing faults, the accuracy rate could reach about 92%.

Key words: fault diagnosis, acoustic emission, spectral subtraction, genetic algorithm, wavelet packet transform, SVM

中图分类号: 

  • TP368.1