电子科技 ›› 2020, Vol. 33 ›› Issue (6): 18-23.doi: 10.16180/j.cnki.issn1007-7820.2020.06.004

• • 上一篇    下一篇

基于天牛须算法的粒子群算法在PID参数整定上的应用

吴强,张伟,杨慧婷,汪朝盈   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2019-04-10 出版日期:2020-06-15 发布日期:2020-06-18
  • 作者简介:吴强(1995-),男,硕士研究生。研究方向:最优控制、深度学习。|张伟(1981-),男,博士,副教授。研究方向:最优控制及其应用。
  • 基金资助:
    国家自然科学基金(11502145)

Application of Particle Swarm Optimization Based on Beetle Antennae Search Algorithm in PID Parameter Tuning

WU Qiang,ZHANG Wei,YANG Huiting,WANG Chaoying   

  1. School of Optoelectronic Information and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2019-04-10 Online:2020-06-15 Published:2020-06-18
  • Supported by:
    National Natural Science Foundation of China(11502145)

摘要:

PSO虽然被广泛应用于包含PID参数整定等各种寻优问题中,但是传统粒子群算法在某些场合收敛速度慢且较容易陷入局部最优值。针对这些问题,文中提出一种将新型高效BAS融合进PSO算法的全局寻优过程,该方法可以更好地跳出局部最优点。同时,由于BAS算法为单一个体的算法,易因为早熟收敛陷入局部最优,故将BAS和传统的PSO结合也增强了BAS的丰富度。在Schaffer函数进行的20次独立测试显示,该算法相对于传统PSO和BAS取得了较好的寻优结果。最后,将算法应用到不稳定对象的PID参数寻优中,结果显示相对于PSO和改进PSO算法,新算法下的ts、tr、IAE、ISE等各项指标均得到了提高。

关键词: 粒子群算法, 天牛须算法, PID参数整定, 改进粒子群算法, Schaffer函数, 不稳定对象, Simulink仿真

Abstract:

PSO is widely used in various optimization events, including PID parameter tuning. However, the traditional particle swarm optimization has a slow convergence speed in some cases and is easy to fall into local optimum values. Aiming at this problem, this study proposed a new efficient BAS integrated into the PSO algorithm. The BAS algorithm was applied to the global optimization process of the traditional PSO algorithm, so that it can jump out of the local optimum better. At the same time, because the BAS algorithm is a single individual algorithm, it is easy to fall into local optimum because of premature convergence. By combining with traditional PSO, the richness of BAS was significantly enriched. After 20 independent tests on Schaffer function, compared with the traditional PSO, BAS and the cited references studies, the proposed algorithm achieved better optimization results. Finally, the algorithm was applied to the optimization of the PID parameters of unstable objects. Compared with the PSO and the improved PSO, the indexes such as ts, tr, IAE and ISE had achieved better improvement.

Key words: particle swarm optimization, beetle antennae search algorithm, PID parameter tuning, improved particle swarm optimization, Schaffer function, unstable object, Simulink simulation

中图分类号: 

  • TP273