[1] |
Park S, Chung W K, Kim K. Training-free Bayesian self-adaptive classification for SEMG pattern recognition including motion transition[J]. IEEE Transactions on Biomedical Engineering, 2020,67(6):1775-1786.
doi: 10.1109/TBME.2019.2947089
pmid: 31613748
|
[2] |
Harper R H R. The role of HCI in the age of AI[J]. International Journal of Human-Computer Interaction, 2019,35(15):1331-1344.
|
[3] |
Liu L, Song Y M, Yang P, et al. Pattern recognition of artificial legs based on WPT and LVQ [C].Tianjin:Chinese Intelligent Automation Conference, 2017.
|
[4] |
Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015,115(3):211-252.
|
[5] |
Kohonen T. The “neural”phonetic typewriter [C].London: The Second European Seminar on Neural Computing: Commercial Prospects, 1988.
|
[6] |
Qiu S, Gao L, Wang J. Classification and regression of ELM, LVQ and SVM for E-nose data of strawberry juice[J]. Journal of Food Engineering, 2015,144(7):77-85.
|
[7] |
Liu L, Song Y, Yang P, et al. Pattern recognition of artificial legs based on WPT and LVQ[C].Tianjin:Chinese Intelligent Automation Conference(CIAC), 2017.
|
[8] |
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]. Budapest:IEEE International Joint Conference on Neural Networks (IJCNN), 2004.
|
[9] |
Anam K, Al-Jumaily A. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees[J]. Neural Networks: the Official Journal of the International Neural Network Society, 2016,85(9):51-68.
|
[10] |
Wang J H, Qi L, Wang X. Surface EMG signals based motion intent recognition using multilayer ELM [C].Changchun: Conference on LIDAR Imaging Detection and Target Recognition, 2017.
|
[11] |
Kuo Y, Zhen Z. Real-time pattern recognition for hand gesture based on ANN and surface EMG[C].Chongqing:IEEE the Eighth Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2019.
|
[12] |
Zhang Q, Benveniste A. Wavelet networks[J]. IEEE Transactions on Neural Networks, 1992,3(6):89-98.
|
[13] |
Feng Y, Cui N B, Zhao L, et al. Comparison of ELM,GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China[J]. Journal of Hydrology, 2016,53(6):376-383.
|
[14] |
Cheng R, Bai Y P. A novel approach to fuzzy wavelet neural network modeling and optimization[J]. International Journal of Electrical Power and Energy Systems, 2015,64(8):671-678.
|
[15] |
Duan F, Dai L, Chang W, et al. SEMG-based identification of hand motion commands using wavelet neural network combined with discrete wavelet transform[J]. IEEE Transactions on Industrial Electronics, 2016,63(3):1923-1934.
|
[16] |
Jang J S R. ANFIS:adaptive-network-based fuzzy inference system[J]. IEEE Transactions on Systems, Man and Cybernetics, 1993,23(3):665-685.
|
[17] |
Suganthi L, Iniyan S, Samuel A A. Applications of fuzzy logic in renewable energy systems-A review[J]. Renewable and Sustainable Energy Reviews, 2015,48(9):585-607.
|
[18] |
石绍应, 王小谟, 曹晨, 等. 规则数确定的自适应模糊分类器[J]. 西安电子科技大学学报, 2017,44(2):81-87.
|
|
Shi Shaoying, Wang Xiaomo, Cao Chen, et al. Adaptive fuzzy classifier with a fixed number of fuzzy rules[J]. Journal of Xidian University, 2017,44(2):81-87.
|
[19] |
Fariman H J, Ahmad S A, Marhaban M H, et al. Simple and computationally efficient movement classification approach for EMG-controlled prosthetic hand: ANFIS vs. Artificial Neural Network[J]. Intelligent Automation and Soft Computing, 2015,21(4):559-573.
doi: 10.1080/10798587.2015.1008735
|
[20] |
Caesarendra W, Tjahjowidodo T, Nico Y, et al. EMG finger movement classification based on ANFIS [C].Medan: International Conference on Mechanical, Electronics, Computer, and Industrial Technology, 2018.
|
[21] |
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks[J]. Communications of the Acm, 2017,60(6):84-90.
|
[22] |
刘如意, 宋建锋, 权义宁. 一种自动的高分辨率遥感影像道路提取方法[J]. 西安电子科技大学学报, 2017,44(1):100-105.
|
|
Liu Ruyi, Song Jianfeng, Quan Yining. Automatic road extraction method for high resolution remote sensing images[J]. Journal of Xidian University, 2017,44(1):100-105.
|
[23] |
Han X B, Zhong Y F, Cao L Q, et al. Pre-Trained AlexNet architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification[J]. Remote Sens, 2017,9(8):1-22.
|
[24] |
Akhundov R, Saxby D J, Edwards S, et al. Development of a deep neural network for automated electromyographic pattern classification[J]. Journal of Experimental Biology, 2019,222(5):1-5.
|
[25] |
Xingqun Z, Fei W, Jianhui W, et al. Deep learning based gesture recognition and its application in interactive control of intelligent wheelchair [C].Shenyang:The Twelfth International Conference on Intelligent Robotics and Applications, 2019.
|
[26] |
Specht D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991,2(6):568-576.
pmid: 18282872
|
[27] |
Noda K, Yamaguchi Y, Nakadai K, et al. Audio-visual speech recognition using deep learning[J]. Applied Intelligence, 2015,42(4):722-737.
doi: 10.1007/s10489-014-0629-7
|
[28] |
王文恺. 基于倒谱与频谱分析的模糊核估计算法[J]. 电子科技, 2019,32(2):4-8.
|
|
Wang Wenkai. Blur kernel estimation algorithm based on cepstrum and spectrum analysis[J]. Electronic Science and Technology, 2019,32(2):4-8.
|
[29] |
Yavuz E, Eyupoglu C. A cepstrum analysis-based classification method for hand movement surface EMG signals[J]. Medical and Biological Engineering and Computing, 2019,57(10):2179-2201.
doi: 10.1007/s11517-019-02024-8
pmid: 31388900
|