[1] |
马立新, 何亮. 基于紫外成像系统的电晕放电评级算法研究[J]. 电子测量技术, 2018,41(1):141-144.
|
|
Ma Lixin, He Liang. Research for the discharge of corona discharge rating algorithm based on UV imaging system[J]. Electronic Measurement Technology, 2018,41(1):141-144.
|
[2] |
黄云程, 郑云海, 许萍萍. 应用红外检测技术评估复合绝缘子劣化状态[J]. 电工电气, 2019(6):48-52.
|
|
Huang Yuncheng, Zheng Yunhai, Xu Pingping. Degradation state of composite insulator evaluated by infrared detection technology[J]. Electrotechnics Electric, 2019(6):48-52.
|
[3] |
卓晓冬. 电气设备绝缘系统局部放电检测技术研究[J]. 电子科技, 2019,32(11):83-86.
|
|
Zhuo Xiaodong. Research on partial discharge detection technology of electrical equipment insulation system[J]. Electronic Science and Technology, 2019,32(11):83-86.
|
[4] |
吕志宁. 输电线路常见故障分析与检测方法综述[J]. 自动化与仪器仪表, 2020,243(1):161-168.
|
|
Lü Zhining. A survey of common faults analysis and detection methods for transmission line[J]. Automation & Instrumentation, 2020,243(1):161-168.
|
[5] |
苏饶, 李菲菲, 陈虬. 基于多特征融合的人脸识别算法[J]. 电子科技, 2019,32(7):43-48.
|
|
Su Rao, Li Feifei, Chen Qiu. Face recognition algorithm based on multiple feature fusion[J]. Electronic Science and Technology, 2019,32(7):43-48.
|
[6] |
裴斐. 基于深度卷积神经网络的图像风格迁移系统研究[D] 银川:宁夏大学, 2019.
|
|
Pei Fei. Research on image style migration system based on deep convolutional neural network[D]. Yinchuan: Ningxia University, 2019.
|
[7] |
Asimakopoulou G E, Kontargyri V T, Tsekouras G J, et al. Artificial neural network optimization methodology for the estimation of the critical flashover voltage on insulators[J]. IET Science Measurement & Technology, 2009,3(1):90-104.
doi: 10.1049/iet-smt:20080009
|
[8] |
Chen Y, Xu Y. Detection and localization of untwisted strand in transmission lines using cascade shape filtering and color filtering[C]. Hangzhou:IEEE Workshop on Signal Processing Systems, 2015.
|
[9] |
马立新, 张骏, 浦荣杰. 紫外放电检测量化表征及预测方法研究[J]. 电测与仪表, 2015,52(1):106-110.
|
|
Ma Lixin, Zhang Jun, Pu Rongjie. Study on quantitative characterization and prediction method of UV discharge detection[J]. Electrical Measurement & Instrument, 2015,52(1):106-110.
|
[10] |
Zhang Z J, Zhang W, Zhang D D, et al. Comparison of different characteristic parameters acquired by UV imager in detecting corona discharge[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016,23(3):1597-1604.
doi: 10.1109/TDEI.2016.005499
|
[11] |
袁国亮. 无监督学习和多重采样对卷积神经网络的优化研究[D]. 武汉:湖北工业大学, 2019.
|
|
Yuan Guoliang. Optimization of convolutional neural networks based on unsupervised learning and multi-sampling[D]. Wuhan:Hubei University of Technology, 2019.
|
[12] |
Wang S H, Lü F C, Liu Y P. Estimation of discharge magnitude of composite insulator surface corona discharge based on ultraviolet imaging method[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014,21(4):1697-1704.
doi: 10.1109/TDEI.2014.004358
|
[13] |
Pei S T, Liu Y P, Ji X X, et al. UV-flashover evaluation of porcelain insulators based on deep learning[J]. IET Science, Measurement & Technology, 2018,12(6):770-776.
doi: 10.1049/smt2.v12.6
|
[14] |
Wei J, Ren A, Sun J, et al. Influence of ambient humidity on UV imaging detection of polluted plate model discharge[C]. Xi'an:IEEE Conference on Electrical Materials and Power Equipment, 2017.
|
[15] |
Czajka A, Bowyer K W, Krumdick M, et al. Recognition of image-orientation-based iris spoofing[J]. IEEE Transactions on Information Forensics and Security, 2017,12(9):2184-2196.
doi: 10.1109/TIFS.2017.2701332
|
[16] |
Woon W L, El-Hag A, Harbaji M. Machine learning techniques for robust classification of partial discharges in oil-paper insulation systems[J]. IET Science, Measurement & Technology, 2016,10(3):221-227.
doi: 10.1049/smt2.v10.3
|
[17] |
林锦发. 基于深度学习的遥感图像语义分割方法研究[D]. 广州:广东工业大学, 2019.
|
|
Lin Jinfa. Research on semantic segmentation of remote sensing image based on deep learning[D]. Guangzhou: Guangdong University of Technology, 2019.
|
[18] |
马立新, 周小波, 朱润, 等. 紫外检测电晕放电强度量化分级[J]. 光电工程, 2016,43(1):1-5.
|
|
Ma Lixin, Zhou Xiaobo, Zhu Run, et al. The quantitative classification of corona discharge intensity of UV detection[J]. Opto-Electronic Engineering, 2016,43(1):1-5.
|