电子科技 ›› 2022, Vol. 35 ›› Issue (2): 34-39.doi: 10.16180/j.cnki.issn1007-7820.2022.02.006

• • 上一篇    下一篇

基于GAWK-means的地铁车站指纹定位方法

金霄,吴飞,鄢松,陆雯霞,张忠艺   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2020-10-30 出版日期:2022-02-15 发布日期:2022-02-24
  • 作者简介:金霄(1995-),男,硕士研究生。研究方向:室内定位。|吴飞(1967-),男,博士,教授。研究方向:计算机网络。
  • 基金资助:
    国家自然科学基金青年项目(61902237);上海市科技学术委员会重点项目(18511101600);上海市自然科学基金(17ZR1411900);上海市科委青年科技英才"杨帆计划"项目(19YF1418200);上海工程技术大学研究生科研创新项目(19KY0207)

Fingerprint Location Method of Metro Station Based on GAWK-means

JIN Xiao,WU Fei,YAN Song,LU Wenxia,ZHANG Zhongyi   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science, Shanghai 201620,China
  • Received:2020-10-30 Online:2022-02-15 Published:2022-02-24
  • Supported by:
    National Natural Science Foundation of China(61902237);Key Projects of Shanghai Science and Technology Academic Committee(18511101600);Shanghai Natural Science Foundation(17ZR1411900);Shanghai Science and Technology Commission Young Scientific and Technological Talents "Yang Fan Plan"(19YF1418200);Graduate Scientific Research and Innovation Program of Shanghai University of Engineering Science(19KY0207)

摘要:

针对在城市轨道交通车站内,利用iBeacon技术进行指纹定位时存在匹配效率较低、定位精度不理想的问题,文中提出了一种基于GAWK-means的地铁车站指纹定位方法。离线阶段,根据指纹数据本身的离散程度进行K-means欧式距离权重优化以便更好地体现类内相似度,再将改进的K-means结合遗传算法,优化聚类结果以减少陷入局部最优。在线阶段,利用K近邻法将信号向量与最为接近的子指纹库匹配获得定位结果,通过平均定位误差对该方法整体性能进行评估。实验结果表明,在地铁车站离线阶段使用GAWK-means算法平均定位误差为1.52 m,相较于未聚类和传统K-means聚类,定位误差减少了0.41 m以上。

关键词: 地铁车站, iBeacon技术, 指纹定位, 遗传算法, K-means聚类, 欧式距离, K近邻法, GAWK-means

Abstract:

In order to solve the problem of low matching efficiency and poor positioning accuracy when using iBeacon technology for fingerprint location in urban rail transit stations, a metro station fingerprint location method based on GAWK-means is proposed in this study. In the offline stage, the K-means Euclidean distance weight is optimized according to the discreteness of the fingerprint data to better reflect the intra-class similarity. Then, the improved K-means is combined with the genetic algorithm to optimize the clustering results to reduce the clustering results from falling into the local optimum. In the online stage, the K-nearest neighbor method is used to match the signal vector with the nearest sub-fingerprint database to get the location result, and the overall performance of the method is evaluated by the average positioning error. The experimental results show that the average positioning error of the GAWK-means algorithm is 1.52 m in the offline phase of the subway station. Compared with the un-clustered and traditional K-means clustering, the positioning error of the proposed method is reduced by more than 0.41 m.

Key words: metro station, iBeacon technology, fingerprint location, genetic algorithm, K-means clustering, Euclidean distance, K-nearest neighbor method, GAWK-means

中图分类号: 

  • TN92