电子科技 ›› 2022, Vol. 35 ›› Issue (2): 27-33.doi: 10.16180/j.cnki.issn1007-7820.2022.02.005

• • 上一篇    下一篇

基于支持向量机的轨道结构病害识别研究

伍伟嘉,杨俭,袁天辰,邵志慧   

  1. 上海工程技术大学 城市轨道交通学院,上海 201620
  • 收稿日期:2020-10-01 出版日期:2022-02-15 发布日期:2022-02-24
  • 作者简介:伍伟嘉(1997-),男,硕士研究生。研究方向:轨道结构智能监测与预警。|杨俭(1962-),男,博士,教授。研究方向:城市轨道交通车辆运行节能技术。|袁天辰(1988-),男,博士,讲师。研究方向:车辆轨道耦合动力学。|邵志慧(1995-),女,硕士研究生。研究方向:轨道结构智能监测和预警。
  • 基金资助:
    国家自然科学基金青年项目(11802170);上海市晨光计划项目(18CG66);上海市自然科学基金(19ZR1421700)

Research on Track Structure Damage Identification Based on Support Vector Machine

WU Weijia,YANG Jian,YUAN Tianchen,SHAO Zhihui   

  1. School of Urban Railway Transportation,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2020-10-01 Online:2022-02-15 Published:2022-02-24
  • Supported by:
    National Natural Science Foundation of China(11802170);Shanghai Morning Light Project(18CG66);Shanghai Natural Science Foundation(19ZR1421700)

摘要:

轨道结构作为承载列车载荷的关键部件,一旦出现病害将直接影响列车的行驶安全。针对这一问题,文中提出了一种基于支持向量机的轨道结构病害识别方法。该方法利用时域统计和离散小波变换对轨道结构不同工况,例如正常状态、轨枕空吊、道床板结下轨枕振动加速度数据进行联合特征提取,降低了数据的维度,为病害识别提供了可能。该方法还利用支持向量机算法对特征向量进行识别,并采用网格搜索方法对支持向量机参数进行选优,识别准确率在85%左右。实验结果表明,所提方法可以对不同程度的轨枕空吊及道床板结病害进行较好地识别,为轨道结构故障在线预警提供技术基础。

关键词: 轨枕空吊, 道床板结, 病害识别, 时域统计, 特征提取, 网格搜索, 支持向量机

Abstract:

The track structure is a key component that carries the load of the train. Once a disease occurs, it will directly affect the safety of the train. To solve this problem, a method for identifying the track structure disease based on a support vector machine is proposed. This method uses time-domain statistics and discrete wavelet transform to perform joint feature extraction on the vibration acceleration data of the sleeper under different working conditions of the track structure, such as normal state, unsupported sleeper and cement hardening, which reduces the dimensionality of data and provides the possibility for disease identification. The method also uses the support vector machine algorithm to identify the feature vector, and uses the grid search method to select the parameters of the support vector machine, so that the recognition accuracy rate reaches about 85%. The experimental results show that the proposed method can better identify different degrees of unsupported sleeper and cement hardening, and provide a technical basis for online early warning of track structure failure.

Key words: unsupported sleeper, cement hardening, disease identification, time-domain statistics, feature extraction, grid search, support vector machine

中图分类号: 

  • TP391.4