电子科技 ›› 2022, Vol. 35 ›› Issue (3): 38-44.doi: 10.16180/j.cnki.issn1007-7820.2022.03.006

• • 上一篇    下一篇

基于3D全卷积网络的腹部动脉CTA分割算法

纪玲玉,高永彬,赵呈陆,汤先华,徐凯成,徐嘉诚   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 出版日期:2022-03-15 发布日期:2022-04-02
  • 基金资助:
    国家自然科学基金(61802253);上海市科委重点项目(18411952800)

CTA Segmentation Algorithm of Abdominal Artery Based on 3D Fully Convolutional Network

Lingyu JI,Yongbin GAO,Chenglu ZHAO,Xianhua TANG,Kaicheng XU,Jiacheng XU   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • Online:2022-03-15 Published:2022-04-02
  • Supported by:
    Fund: National Natural Science Foundation of China(61802253);Key Project of Shanghai Science and Technology Commission(18411952800)

摘要:

目前卷积神经网络已成为腹部动脉血管分割领域的研究热点,但经典的卷积网络存在分割精度低和分割血管不连续的问题。为此,文中提出了基于改进3D全卷积网络的腹部动脉血管分割算法。该方法在网络的编码路径上构造不同尺度的侧输入,并将侧输入卷积后的图像与下采样卷积后的图像进行融合,提取更多的特征信息。同时,网络中嵌入了新的多尺度特征提取模块,该模块将通道注意力与密集扩张卷积进行了融合,有效地捕获了更高层次的特征信息。对腹部动脉血管进行分割的结果表明,与其他分割方法相比,所提方法在直观性和定量性上均有提高,证明了该方法能够提升血管分割精度。

关键词: 医学图像处理, 计算机断层扫描, 腹部血管分割, 3D卷积神经网络, 密集扩张卷积, 通道注意力机制, 多尺度特征融合

Abstract:

Convolutional neural networks have become a research hotspot in the field of abdominal artery segmentation. The classic convolutional network has the problems of low segmentation accuracy and discontinuous segmentation of blood vessels. In view of these problems, this study proposes an abdominal arterial vessel segmentation algorithm based on an improved 3D full convolutional network. The side input of different scales is constructed on the encoding path of the network, and the convoluted image of side input is fused with the convoluted image of down sampling to extract more feature information. Meanwhile, a new multi-scale feature extraction module is embedded in the network. In this module, the channel attention and dense dilation convolution are introduced to capture the higher-level feature information. The experimental results on abdominal artery segmentation show that compared with other segmentation methods, the proposed method is more intuitive and quantitative, indicating that this method can improve the accuracy of blood vessel segmentation.

Key words: medical image processing, computed tomography, abdominal vascular segmentation, 3D convolution neural network, dilation convolution, channel attention mechanism, multi-scale feature fusion

中图分类号: 

  • TP391